

Welcome to the WACryptolib documentation!

	Presentation
	Overview

	Installing the lib

	CLI interface

	Cryptolib concepts
	Different digital keys

	Data naming and integrity

	Keypair repositories

	Trusted parties

	Cryptainers and cryptoconfs

	Discover cryptainers
	Overview

	Encrypting data into a cryptainer

	Decrypting data from a cryptainer

	Noteworthy fields of a cryptainer

	Cryptoconf examples
	Simple cryptoconf

	Complex cryptoconf

	Flightbox CLI Tutorial
	CLI overview

	Playing with default encryption

	Creating an authenticator trustee

	Importing foreign keystores

	Generating simple cryptoconfs

	Securely encrypting data

	Managing cryptainers

	Flightbox CLI Reference
	flightbox

	Selected algorithms and formats
	Symmetric ciphers

	Asymmetric ciphers

	Signature algorithms

	Hashing functions

	Storage formats

	Communication protocols

	Notes on safety and performance

	API Documentation
	Cryptainer

	Trustee

	Authenticator

	Authentication device

	Key generation

	Key storage

	Signature

	Encryption

	Shared secret

	Sensor

	Json-rpc client

	Utilities

	Exceptions

	Error handling

	Scaffolding for tests

	Development instructions
	Getting started

	Release process

Indices and tables

	Index

	Module Index

	Search Page

Witness Angel Cryptolib

[image: _images/y7mfa00b6c34khe0.svg]
 [https://travis-ci.com/WitnessAngel/witness-angel-cryptolib][image: _images/c6a24308b6ae1fc8a2ca28dbaa7a6055a2af0db0.svg]
 [https://witness-angel-cryptolib.readthedocs.io/en/latest/]-> Full documentation on READTHEDOCS! [https://witness-angel-cryptolib.readthedocs.io/en/latest/] <-

Overview

The Witness Angel Cryptolib is a toolkit aimed at handling secure configuration-driven containers, called cryptainers.

By leveraging a flexible JSON-based format called cryptoconf, users can define their own hybrid cryptosystem, recursively combining symmetric cihers, asymmetric ciphers, shared secrets, and data signatures.

Access to the cryptainers is secured by a variety of actors: local device, remote servers, trusted third parties...

The decryption process can involve different steps, like entering passphrases, or submitting authorization requests to remote "key guardians".

Overall, the lib gathers utilities to generate and store cryptographic keys, encrypt/check/decrypt cryptainers, access webservices and recorder sensors, and help testing other libraries willing to extend these tools.

Installing the lib

Just launch inside your python environment:

pip install wacryptolib

CLI interface

A command-line interface launcher, flightbox, is available to play with simple cryptainers.

$ flightbox --help

Look at the Flightbox manual, on readthedocs.org, for more details.

Cryptolib concepts

To avoid too long variable name, and to disambiguate words like "key" which have too many different meanings (symmetric key, asymmetric key, usb key, index key...), this library introduces its own set of terms, in addition to those already widely used in cryptography (cipher, signature, hash...).

Different digital keys

Lots of different "keys" and related concepts are used cryptolib code, so we use more precise terms when relevant.

A key-algo is a reference to either an encryption scheme (symmetric or asymmetric), or to a signature scheme (always asymmetric).
In some parts of the code, when the purpose of the key is already sure, the names "cipher-algo" or "signature-algo" are used instead.

A keypair is a dict containing both "public" and "private" keys, for use in an asymmetric cipher or signature. Depending on the situation, these keys can be python objects, or serialized as PEM bytestrings (the private key being then possibly passphrase-protected. Keypairs are meant to be identified by a pair of [keychain_uid, key_algo] references (since for security, a keypair should indeed only be used for a single purpose). A keychain is thus of set of keypairs having a common UUID, but each used for a different purpose/algorithm.

A symkey is a dict containing all parameters required to configure a symmetric encryption/decryption cipher. Typically, it means a binary "secret key", and additional fields like "initialization vector" or "nonce", depending on the symmetric key-algo concerned. These symkeys are meant to be randomly generated, immediately protected by asymmetric ciphers, and stored along the encrypted data - as usual in a hybrid cryptosystem. Symkeys are anonymous.

When a bytestring (typically a serialized symkey) is split via a "Shamir shared secret" scheme, we refer to the different parts as shards (and not "shares", the other possible name). However, symkeys and their shards are often all called "symkeys" in the code, when the difference doesn't matter (e.g. when issuing decryption authorization requests).

Note that inside configurations and containers, we mostly use the term key, since the context should make it clear what exactly is at stake (mostly symmetric keys or their shards being encrypted via miscellaneous algorithms)

Data naming and integrity

We use payload to designate the actual content of recorded data (audio, video, gps...), at various stages of its encryption process.

We use cleartext and ciphertext to differentiate BINARY (not actual text) data before and after its encryption; although, since we're in a multi-layered encryption scheme, the ciphertext of an encryption layer becomes the cleartext for the next one.

The word digest is used, instead of "hash", to name the short bytestring obtained by hashing a payload. This digest can then be used as the "message" on which a timestamped signature is applied by a trustee, offering of proof of payload integrity and anteriority.
The term mac (message authentication code) is used, instead of "tag", to designate a short bytestring which might be obtained at the end of a symmetric encryption operation. This bytestring offers of proof of the payload integrity, and also authenticity (i.e. it was well encrypted with the provided secret key).
Those digests and macs can be considered all together as integrity tags.

Only when dealing with bytestrings that could be anything (serialized key, serialized json, final encrypted payload...), for example in filesystem utilies, we use the all-embracing term data.

Keypair repositories

A keystore is a generic storage for asymmetric keypairs. Its is typically a set of public/private PEM files in a directory. Keys can be a predetermined and immutable set, or on the contrary generated on demand; private keys can be present or not, protected by passphrases or not; a JSON metadata file describing this repository (type, owner, unique id...) can be present or not; it all depends on the subtype of the keystore.

The local-keyfactory keystore is the default keystore available on recording devices, as well as server trustees (see below). It can generate keypairs on demands, and typically doesn't protect them with passphrases.

An authenticator is a subtype of keystore used to provide a digital identity to a trusted third party (typically an individual). It is a fixed set of keypairs, all protected by the same passphrase, with some additional authentication fields in a metadata file. An authdevice, or authentication device, is a physical device on which an authenticator can be stored (for now, we use a simple folder at the root of an usb storage), if it is not simply stored in a local disk.

Authenticators can publish their public keys, and public metadata, to a web gateway - a simple online registry - so that other people may easily access them.

When keystores are imported from an authdevice or a web gateway, the imported copies naturally only contains a part (public, or at least without confidential information) of the initial authenticator.

Trusted parties

The data encrypted inside a cryptainer relies on multiple actors to protect itself from unwanted access.

Each of these actors is commonly designated as a trustee in the code. A trustee offers a set of standard services: providing public keys for encryption, delivering messages signatures, and treating requests for data decryption.

A recorder device has a local-keyfactory trustee, backed by the local-keyfactory keystore, which can encrypt and sign data using its own generated-on-demand digital keys.

But real protection is provided by trustees also called key guardians, which are trusted third parties. Access to these remote trustees is generally done via Internet, even if other channels (e.g. usb devices temporarily plugged in) can be used too. For now, these remote trustees can be server trustees (e.g. a database-backed keystore administrated by an association), or authenticator trustees (e.g. an individual having an authenticator keystore on his smartphone).

Cryptainers and cryptoconfs

For more information on these concepts, see the dedicated page.

Discover cryptainers

Overview

A cryptainer is a flexible, recursive structure dedicated to hybrid encryption. Each piece of data is encrypted one or several times in a row, and the "keys" (random symmetric keys, or shards obtained from a shared secret algorithm) used for these encryption operations become themselves pieces of encryptable data, thus repeating the process.

This gives a tree of protected data, in which the leaves are "trustees" relying on asymmetric (public key) encryption algorithms to protect intermediate "keys", and thus secure the encrypted payload.

This structure allows for some nice features:

	Fine-grained permission system: a complex mix of "mandatory" and "optional" trustees can protect the data together

	Auditability: chosen algorithms and other metadata are clearly exposed, allowing anyone to check that security level is sufficient

	Evolutive encryption: if some algorithms become unsafe, or if a storage wants to add an additional level of safety, it is easy to strengthen the cryptainer by adding some layers of encryption/signature in chosen parts of its tree.

The structure of a cryptainer is driven by a configuration tree called a cryptoconf.

A cryptoconf actually defines the skeleton of a cryptainer. During encryption, this structure will be filled with ciphertexts, integrity tags, signatures, and miscellaneous metadata to become the actual cryptainer.

Here is an example of medium-complexity cryptoconf:

 +---------+
 | payload |
 |cleartext|
 +---------+
 |
 |
[AES-EAX CIPHER] <-[RSA-OAEP CIPHER]- [KEY-GUARDIAN "witnessangel.com"]
 |
 v
 +------------+
 | payload | <-[RSA-PSS SIGNATURE]- [KEY-GUARDIAN: "Paul Dupond"]
 |ciphertext 1| <-[ECC_DSS SIGNATURE]- [KEY-GUARDIAN: Local Device]
 +------------+
 | _
 | / <-[RSA-OAEP CIPHER- [KEY-GUARDIAN: "John Doe"]
[AES-CBC CIPHER] <-[SHARED-SECRET (2 on 3))- -- <-[RSA-OAEP CIPHER- [KEY-GUARDIAN: "Jane Doe"]
 | _ <-[RSA-OAEP CIPHER- [KEY-GUARDIAN: "Jack Doe"]
 v
 +------------+
 | payload |
 |ciphertext 2|
 +------------+

In this custom cryptosystem:

	the sensitive payload is first encrypted by AES-EAX, then by AES-CBC.

	The randomly-generated symmetric keys used for these symmetric encryptions are then protected in different ways.

	The first one is encrypted with the public key of the key guardian server "witnessangel.com".

	The second one is split into 3 "shards", each protected by the public key of a different member of the family Doe.

	Two timestamped signatures are stapled to the cryptainer, both applied on the intermediate ciphertext (so they will only be verifiable after the outer AES-CBC layer has been decrypted)

Encrypting data into a cryptainer

Encryption/signature of the payload

The first "pipeline" of encryption has a special status, because it deals with the protection of the initial data (audio, video, or any other medium/document), called "payload" in our terminology.

This payload can have a very large size, and it is the actual, sensitive information to secure against reading and modification.

So for this first layer of encryption:

	The payload ciphertext can be stored apart from the cryptainer tree (we then call it an "offloaded payloaded")

	Only symmetric ciphers are allowed, since asymmetric ones are slow and often insecure when handling big inputs

	The resulting ciphertext can be signed and timestamped by one or more trustees (the initial payload can't be signed, for now, as this might leak information about its content)

Encryption of the keys

At each level of the rest of the recursive cryptainer tree, the currently considered "key" goes through its own pipeline of encryption. Each node of this pipeline receives as cleartext the ciphertext of the previous node, and can be one of one of these type:

	a shared secret: "splits" the data into N shards, with M of them required to reconstitute the data; each shard is then encrypted through its own pipeline

	a symmetric cipher: encrypts the data using a randomly generated key, which is then encrypted through its own pipeline

	an asymmetric cipher: encrypts the data using a public key owned by a "trustee"; this ends the recursion on that branch of the cryptainer

Different modes of encryption processing

If a payload of cleartext data is available, it can be encrypted and dumped to file in a single pass; however this can consume a lot of CPU and RAM on the moment.

As an alternative, the cryptolib supports on-the-fly encryption of data chunks transmitted during a long recording.

For that, we must setup a recording toolchain consisting of:

	sensors which get pushed, or at the contrary go pull, recorded chunks from hardware

	aggregators which combine data chunks into proper cleartext media/documents

	a pipeline which consumes cleartext data chunk by chunk, encrypts it, and streams it to disk (as an offloaded ciphertext)

In this scenario, the JSON cryptainer structure is initialized at the beginning of the recording, and remains in a pending state. At the end of the recording, integrity tags and payload signatures get added to this work-in-progress cryptainer, and it becomes complete.

Decrypting data from a cryptainer

Like in any layered encryption structure, decryption has to be performed from the outer shell to the core of the cryptainer.

This means that each key encryption pipeline is rolled back to recover a cleartext "key", which is in turn used to roll back the pipeline below it.

Along the way, payload integrity is verified thanks to both ciphertext signatures (checked via the public key of the related trustee), and integrity tags/macs (built in each symmetric or asymmetric cipher).

Since the leaves of the cryptainer tree are protected by trustees, they require external operations to be decrypted.

	"Local Key Factory" trustees are the easiest: their generated-on-demand keypairs have no passphrase protection on their private keys, so as long as these private keys are present (typically, on the recording device), decryption will succeed.

	"Server" trustees rely on keypairs generated-on-demand on a remote server (typically without passphrase protection of private keys). These trustees require decryption authorization requests to be submitted in advance to the server. When these permissions are then granted by an administrator, the server will accept to decrypt "key" ciphertexts submitted during the subsequent decryption operation.

	"Authenticator" trustees are individual key guardians having generated their own digital identity, with a set of keypairs protected by their (secret) passphrase. There are two ways to achieve decryption with them : either import their private keys locally and ask for their passphrase (low security), or send a secure key exchange request on a common web registry, which key guardians will then accept/reject from their own Authenticator device (high security).

Known limitations: As of today, the wacryptolib decryptor works in a single pass, and doesn't support partial decryption of cryptainers. It means that all "leaves" of the cryptainer tree must be unlocked in advance, by their relevant trustee. In practice, it means that all "Authenticator" trustees should be at the end of their "key" encryption pipeline, else they do not have access to the "key" ciphertext which must be sent as part of a decryption authorization request (so only the direct input of a passphrase would work). So instead of stacking 3 authenticator-backed RSA-OAEP encryptions in a row, for example, it is better to stack 3 symmetric ciphers (like AES-CBC or ChacCha20), and then protect each of their 3 randomly generated symkeys with a single authenticator-backed asymmetric encryption.

Noteworthy fields of a cryptainer

The cryptainer_uid field, located at the root of a cryptainer, uniquely identifies it.

The keychain_uid field, located nearby, can on the contrary be shared by several cryptainers, which thus end up targeting a common keychain of keypairs held by trustees (these keypairs being differentiated by their key-algo value).
However this default keychain_uid can also be overridden deeper in the configuration tree, for each asymmetric cipher node.

A metadata dict field can be used to store miscellaneous information about the cryptainer (time, location, type of recording...).

Cryptoconf examples

Simple cryptoconf

Below is a minimal cryptainer configuration in python format, with a single encryption layer and its single signature, both backed by the local "trustee" (or "key guardian") of the device; this workflow should not be used in real life of course, since the data is not protected against illegal reads.

{
 "payload_cipher_layers":[
 {
 "key_cipher_layers":[
 {
 "key_cipher_algo":"RSA_OAEP",
 "key_cipher_trustee":{
 "trustee_type":"local_keyfactory"
 }
 }
],
 "payload_cipher_algo":"AES_CBC",
 "payload_signatures":[
 {
 "payload_digest_algo":"SHA256",
 "payload_signature_algo":"DSA_DSS",
 "payload_signature_trustee":{
 "trustee_type":"local_keyfactory"
 }
 }
]
 }
]
}

A corresponding cryptainer content, in Pymongo's Extended Json format (base64 bytestrings shortened for clarity), looks like this.
Binary subType 03 means "UUID", whereas subType 00 means "bytes".

{
 "cryptainer_format":"cryptainer_1.0",
 "cryptainer_metadata":null,
 "cryptainer_state":"FINISHED",
 "cryptainer_uid":{
 "$binary":{
 "base64":"Du14m64eb4m/+/uCPAkEqw==",
 "subType":"03"
 }
 },
 "keychain_uid":{
 "$binary":{
 "base64":"Du14m64emE23Dnuw4+aKFA==",
 "subType":"03"
 }
 },
 "payload_cipher_layers":[
 {
 "key_cipher_layers":[
 {
 "key_cipher_algo":"RSA_OAEP",
 "key_cipher_trustee":{
 "trustee_type":"local_keyfactory"
 }
 }
],
 "key_ciphertext":{
 "$binary":{
 "base64":"eyJkaWdlc3Rfb...JzdWJUeXBlIjogIjAwIn19XX0=",
 "subType":"00"
 }
 },
 "payload_cipher_algo":"AES_CBC",
 "payload_macs":{
 },
 "payload_signatures":[
 {
 "payload_digest_value":{
 "$binary":{
 "base64":"XgNeHINsXw16Tl...WtknjGh93nMB4v09Y=",
 "subType":"00"
 }
 },
 "payload_digest_algo":"SHA256",
 "payload_signature_algo":"DSA_DSS",
 "payload_signature_struct":{
 "signature_timestamp_utc":{
 "$numberInt":"1641305798"
 },
 "signature_value":{
 "$binary":{
 "base64":"F/q+FZQThx1JnyUCwwh...59NCRreWpf2BK8673qMc=",
 "subType":"00"
 }
 }
 },
 "payload_signature_trustee":{
 "trustee_type":"local_keyfactory"
 }
 }
]
 }
],
 "payload_ciphertext_struct":{
 "ciphertext_location":"inline",
 "ciphertext_value":{
 "$binary":{
 "base64":"+6CAsNlLHTHFxVcw6M9p/SK...axRM3poryDA/BP9tBeaFU4Y=",
 "subType":"00"
 }
 }
 }
}

Complex cryptoconf

Below is a python data tree showing all the types of node possible in a cryptoconf.

We see the 3 currently supported types of trustee: local_keyfactory, authenticator (with a keystore_uid), and jsonrpc_api (with a jsonrpc_url).

We also see how share secrets, symmetric ciphers, and asymmetric ciphers (RSA_OAEP and its attached trustee) can be combined to create a deeply nested structure.

{
 "payload_cipher_layers":[
 {
 "key_cipher_layers":[
 {
 "key_cipher_algo":"RSA_OAEP",
 "key_cipher_trustee":{
 "jsonrpc_url":"http://www.mydomain.com/json",
 "trustee_type":"jsonrpc_api"
 }
 }
],
 "payload_cipher_algo":"AES_EAX",
 "payload_signatures":[
]
 },
 {
 "key_cipher_layers":[
 {
 "key_cipher_algo":"RSA_OAEP",
 "key_cipher_trustee":{
 "keystore_uid":UUID("320b35bb-e735-4f6a-a4b2-ada124e30190"),
 "trustee_type":"authenticator"
 }
 }
],
 "payload_cipher_algo":"AES_CBC",
 "payload_signatures":[
 {
 "payload_digest_algo":"SHA3_512",
 "payload_signature_algo":"DSA_DSS",
 "payload_signature_trustee":{
 "trustee_type":"local_keyfactory"
 }
 }
]
 },
 {
 "key_cipher_layers":[
 {
 "key_cipher_algo":"[SHARED_SECRET]",
 "key_shared_secret_shards":[
 {
 "key_cipher_layers":[
 {
 "key_cipher_algo":"RSA_OAEP",
 "key_cipher_trustee":{
 "trustee_type":"local_keyfactory"
 }
 },
 {
 "key_cipher_algo":"RSA_OAEP",
 "key_cipher_trustee":{
 "trustee_type":"local_keyfactory"
 }
 }
]
 },
 {
 "key_cipher_layers":[
 {
 "key_cipher_algo":"AES_CBC",
 "key_cipher_layers":[
 {
 "key_cipher_algo":"[SHARED_SECRET]",
 "key_shared_secret_shards":[
 {
 "key_cipher_layers":[
 {
 "key_cipher_algo":"RSA_OAEP",
 "key_cipher_trustee":{
 "trustee_type":"local_keyfactory"
 },
 "keychain_uid":UUID("65dbbe4f-0bd5-4083-a274-3c76efeecccc")
 }
]
 }
],
 "key_shared_secret_threshold":1
 },
 {
 "key_cipher_algo":"RSA_OAEP",
 "key_cipher_trustee":{
 "trustee_type":"local_keyfactory"
 }
 }
]
 }
]
 },
 {
 "key_cipher_layers":[
 {
 "key_cipher_algo":"RSA_OAEP",
 "key_cipher_trustee":{
 "trustee_type":"local_keyfactory"
 }
 }
]
 },
 {
 "key_cipher_layers":[
 {
 "key_cipher_algo":"RSA_OAEP",
 "key_cipher_trustee":{
 "trustee_type":"local_keyfactory"
 },
 "keychain_uid":UUID("65dbbe4f-0bd5-4083-a274-3c76efeebbbb")
 }
]
 }
],
 "key_shared_secret_threshold":2
 }
],
 "payload_cipher_algo":"CHACHA20_POLY1305",
 "payload_signatures":[
 {
 "keychain_uid":UUID("0e8e861e-f0f7-e54b-18ea-34798d5daaaa"),
 "payload_digest_algo":"SHA3_256",
 "payload_signature_algo":"RSA_PSS",
 "payload_signature_trustee":{
 "trustee_type":"local_keyfactory"
 }
 },
 {
 "payload_digest_algo":"SHA512",
 "payload_signature_algo":"ECC_DSS",
 "payload_signature_trustee":{
 "trustee_type":"local_keyfactory"
 }
 }
]
 }
]
}

Here is a summary of the same cryptoconf, as returned for example by the CLI "summarize" command.

Data encryption layer 1: AES_EAX
 Key encryption layers:
 RSA_OAEP via trustee 'server www.mydomain.com'
 Signatures: None
Data encryption layer 2: AES_CBC
 Key encryption layers:
 RSA_OAEP via trustee 'authenticator 320b35bb-e735-4f6a-a4b2-ada124e30190'
 Signatures:
 SHA3_512/DSA_DSS via trustee 'local device'
Data encryption layer 3: CHACHA20_POLY1305
 Key encryption layers:
 Shared secret with threshold 2:
 Shard 1 encryption layers:
 RSA_OAEP via trustee 'local device'
 RSA_OAEP via trustee 'local device'
 Shard 2 encryption layers:
 AES_CBC with subkey encryption layers:
 Shared secret with threshold 1:
 Shard 1:
 RSA_OAEP via trustee 'local device'
 RSA_OAEP via trustee 'local device'
 Shard 3 encryption layers:
 RSA_OAEP via trustee 'local device'
 Shard 4 encryption layers:
 RSA_OAEP via trustee 'local device'
 Signatures:
 SHA3_256/RSA_PSS via trustee 'local device'
 SHA512/ECC_DSS via trustee 'local device'

Flightbox CLI Tutorial

CLI overview

The flightbox command-line utility provides subcommands for end-to-end workflows around cryptainers.

$ flightbox -h
Usage: flightbox [OPTIONS] COMMAND [ARGS]...

 Flexible cryptographic toolkit for multi-tenant encryption and signature

Options:
 -v, --verbosity LVL Either CRITICAL, ERROR, WARNING, INFO or
 DEBUG
 -k, --keystore-pool DIRECTORY Folder tree to store keystores (else
 ~/.witnessangel/keystore_pool is used)
 -c, --cryptainer-storage DIRECTORY
 Folder to store cryptainers (else
 ~/.witnessangel/cryptainers is used)
 -g, --gateway-url TEXT URL of the web registry endpoint
 -h, --help Show this message and exit.

Commands:
 authenticator Manage authenticator trustees
 cryptainer Manage encrypted containers
 cryptoconf Manage cryptographic configurations
 encrypt Turn a media file into a secure container
 foreign-keystore Manage locally imported keystores

Note the keystore-pool and cryptainer-storage options: the first one is used to store local and imported keystores, and the second one is used to store encrypted containers.

Hint

The positioning of CLI options is rather strict: they must be added directly after the command they are related too, and before the following subcommand. So for example --gateway-url must be provided after flightbox, but before subcommands like cryptainer, encrypt etc.

Playing with default encryption

Imagine that we won't to encrypt a readme file. The corresponding command could be as simple as:

$ flightbox encrypt readme.rst
warning: No cryptoconf provided, defaulting to simple and INSECURE example cryptoconf
Data file 'readme.rst' successfully encrypted into storage cryptainer

But as the output mentions, this is not a satisfying encryption. Let's see why.

The encrypted container has well been saved into the Cryptainer Storage:

$ flightbox cryptainer list
+------------------+--------+-----------+------------------+
| Name | Size | Offloaded | Created at (UTC) |
+------------------+--------+-----------+------------------+
| readme.rst.crypt | 102 KB | X | 2024-03-30 21:15 |
+------------------+--------+-----------+------------------+

Hint

For performance reasons, the cryptainer is, by default, "offloaded". This means it is separated in two files: the metadata in "readme.rst.crypt", and the (possibly huge) encrypted data in "readme.rst.crypt.payload".

If you open readme.rst.crypt with a text editor, you'll notice that it's just a JSON file, but in Pymongo's Extended Json format: it uses specific fields like $binary or $date to add better types to the serialized data.

Let's now check the structure of this cryptainer:

$ flightbox cryptainer summarize readme.rst.crypt
Loading cryptainer readme.rst.crypt from storage (include_payload_ciphertext=True)

Data encryption layer 1: AES_CBC
 Key encryption layers:
 RSA_OAEP via trustee 'local device'
 Shared secret with threshold 1:
 Shard 1 encryption layers:
 RSA_OAEP via trustee 'local device'
 Shard 2 encryption layers:
 RSA_OAEP via trustee 'local device'
 Signatures:
 SHA256/DSA_DSS via trustee 'local device'

As we see, this cryptainer uses several types of encryption, but only relies on autogenerated local-device keys, which are not protected by a passphrase.

This means that we can directly decrypt the content of this cryptainer:

$ flightbox cryptainer decrypt readme.rst.crypt -o readme.rst.decrypted
Loading cryptainer readme.rst.crypt from storage (include_payload_ciphertext=True)
Decryption report:
[{'entry_criticity': 'INFO',
 'entry_exception': None,
 'entry_message': 'Skipping retrieval of remotely predecrypted symkeys '
 '(requires requestor-uid and gateway urls)',
 'entry_nesting': 0,
 'entry_type': 'INFORMATION'},
 {'entry_criticity': 'INFO',
 'entry_exception': None,
 'entry_message': 'Starting decryption of payload cipher layer 1/1 (algo: '
 'AES_CBC)',
 'entry_nesting': 0,
 'entry_type': 'INFORMATION'},
 {'entry_criticity': 'INFO',
 'entry_exception': None,
 'entry_message': 'Decrypting AES_CBC symmetric key through 2 cipher layer(s)',
 'entry_nesting': 1,
 'entry_type': 'INFORMATION'},
 {'entry_criticity': 'INFO',
 'entry_exception': None,
 'entry_message': 'Deciphering 2 shards of shared secret (threshold: 1)',
 'entry_nesting': 1,
 'entry_type': 'INFORMATION'},
 {'entry_criticity': 'INFO',
 'entry_exception': None,
 'entry_message': 'Decrypting shard #1 through 1 cipher layer(s)',
 'entry_nesting': 2,
 'entry_type': 'INFORMATION'},
 {'entry_criticity': 'INFO',
 'entry_exception': None,
 'entry_message': 'Attempting to decrypt key with asymmetric algorithm '
 'RSA_OAEP (trustee: local_keyfactory)',
 'entry_nesting': 2,
 'entry_type': 'INFORMATION'},
 {'entry_criticity': 'INFO',
 'entry_exception': None,
 'entry_message': 'No predecrypted symmetric found (e.g. coming from remote '
 'trustee)',
 'entry_nesting': 3,
 'entry_type': 'INFORMATION'},
 {'entry_criticity': 'INFO',
 'entry_exception': None,
 'entry_message': 'Attempting actual decryption of key using asymmetric '
 'algorithm RSA_OAEP (via trustee)',
 'entry_nesting': 3,
 'entry_type': 'INFORMATION'},
 {'entry_criticity': 'INFO',
 'entry_exception': None,
 'entry_message': 'A sufficient number of shared-secret shards (1) have been '
 'decrypted',
 'entry_nesting': 2,
 'entry_type': 'INFORMATION'},
 {'entry_criticity': 'INFO',
 'entry_exception': None,
 'entry_message': 'Attempting to decrypt key with asymmetric algorithm '
 'RSA_OAEP (trustee: local_keyfactory)',
 'entry_nesting': 1,
 'entry_type': 'INFORMATION'},
 {'entry_criticity': 'INFO',
 'entry_exception': None,
 'entry_message': 'No predecrypted symmetric found (e.g. coming from remote '
 'trustee)',
 'entry_nesting': 2,
 'entry_type': 'INFORMATION'},
 {'entry_criticity': 'INFO',
 'entry_exception': None,
 'entry_message': 'Attempting actual decryption of key using asymmetric '
 'algorithm RSA_OAEP (via trustee)',
 'entry_nesting': 2,
 'entry_type': 'INFORMATION'}]
Decryption of cryptainer 'readme.rst.crypt' to file 'readme.rst.decrypted' successfully finished

We can then check that readme.rst and readme.rst.decrypted are well the same.

Creating an authenticator trustee

To encrypt data in a more secure fashion, we'll need some key guardians, called trustees in Flightbox.

The simplest form of trustee is an authenticator, a digital identity for a single person. Currently, it is backed by a keystore folder containing some metadata and a bunch of keypairs - all protected by the same "passphrase" (a very long password).

The standard way of generating this identity would be to use a standalone program like the mobile application Witness Angel Authenticator (for Android and iOS), and then to publish the public part of this identity to a web registry.

But we can also create authenticators via the CLI:

$ flightbox authenticator create ./mysphinxdocauthenticator --owner "John Doe" --passphrase-hint "Some hint"
Using passphrase specified as WA_PASSPHRASE environment variable
Authenticator successfully initialized with 3 keypairs in directory /home/docs/checkouts/readthedocs.org/user_builds/witness-angel-cryptolib/checkouts/latest/docs/mysphinxdocauthenticator

For the needs of this doc generation, we had to provide the passphrase as an environment variable, but normally the program will just prompt the user for it.

We can then review the just-created authenticator:

$ flightbox authenticator view ./mysphinxdocauthenticator
+----------------------------+---+
| Property | Value |
+----------------------------+---+
keystore_uid	0f91ac29-22bf-d72b-1430-9240d700f928
keystore_owner	John Doe
keystore_passphrase_hint	Some hint
keystore_creation_datetime	2024-03-30 21:15
keypair_identifiers	RSA_OAEP 0f91ac29-3d7b-41b6-64f1-7633e3bfc8a0
	RSA_OAEP 0f91ac29-5ea1-a478-f5e3-7b698c66b40d
	RSA_OAEP 0f91ac29-d532-b18d-d2e5-8ac4ef902587
+----------------------------+---+

Like for most list/view commands, we can switch to JSON format for automation purposes:

$ flightbox authenticator view ./mysphinxdocauthenticator --format json
{
 "keypair_identifiers": [
 {
 "key_algo": "RSA_OAEP",
 "keychain_uid": {
 "$binary": {
 "base64": "D5GsKT17QbZk8XYz47/IoA==",
 "subType": "04"
 }
 },
 "private_key_present": true
 },
 {
 "key_algo": "RSA_OAEP",
 "keychain_uid": {
 "$binary": {
 "base64": "D5GsKV6hpHj143tpjGa0DQ==",
 "subType": "04"
 }
 },
 "private_key_present": true
 },
 {
 "key_algo": "RSA_OAEP",
 "keychain_uid": {
 "$binary": {
 "base64": "D5GsKdUysY3S5YrE75Alhw==",
 "subType": "04"
 }
 },
 "private_key_present": true
 }
],
 "keystore_creation_datetime": {
 "$date": {
 "$numberLong": "1711833305158"
 }
 },
 "keystore_owner": "John Doe",
 "keystore_passphrase_hint": "Some hint",
 "keystore_uid": {
 "$binary": {
 "base64": "D5GsKSK/1ysUMJJA1wD5KA==",
 "subType": "04"
 }
 }
}

We can check, later, that we still remember the right passphrase for this authenticator:

$ flightbox authenticator validate ./mysphinxdocauthenticator
Using passphrase specified as WA_PASSPHRASE environment variable
Authenticator has UID 0f91ac29-22bf-d72b-1430-9240d700f928 and belongs to owner John Doe
Creation date: 2024-03-30 21:15:05+00:00
Keypair count: 3

Authenticator successfully checked, no integrity errors found

We can delete the authenticator with flightbox authenticator delete ./mysphinxdocauthenticator, which is the same as manually deleting the folder.

Importing foreign keystores

Authenticators are supposed to be remote identities, well protected by their owner.
To use them in our encryption system, we need to import their public keys, which are like "padlocks".
That's what we call "foreign keystores" - partial local copies of remote identities.

Let's begin by importing the authenticator we just created.

$ flightbox foreign-keystore import --from-path ./mysphinxdocauthenticator
Importing foreign keystore from folder /home/docs/checkouts/readthedocs.org/user_builds/witness-angel-cryptolib/checkouts/latest/docs/mysphinxdocauthenticator, without private keys
Authenticator 0f91ac29-22bf-d72b-1430-9240d700f928 (owner: John Doe) imported

Let's also import an identity from a web registry, using its UUID that the owner gave us directly.

$ flightbox --gateway-url https://api.witnessangel.com/gateway/jsonrpc/ foreign-keystore import --from-gateway 0f0c0988-80c1-9362-11c1-b06909a3a53c
Importing foreign keystore 0f0c0988-80c1-9362-11c1-b06909a3a53c from web gateway
Initiating remote call 'get_public_authenticator()' to server https://api.witnessangel.com/gateway/jsonrpc/
Authenticator 0f0c0988-80c1-9362-11c1-b06909a3a53c (owner: ¤aaa) imported

If we have setup authenticators in default locations of connected USB keys, we can automatically import them:

$ flightbox foreign-keystore import --from-usb --include-private-keys
Importing foreign keystores from USB devices, with private keys
0 new authenticators imported, 0 updated, 0 skipped because corrupted

Warning

The --include-private-keys option requests that the private part of the identity be imported too, if present (which is not the case e.g. for web gateway identities). This is only useful if one intends to decrypt data locally, by entering passphrases during decryption. But much more secure workflows are now available, for example by using the mobile application Authenticator.

We can then review the imported keystores, which will be usable for encryption:

$ flightbox foreign-keystore list
+--------------------------------------+----------+-------------+--------------+------------------+
| Keystore UID | Owner | Public keys | Private Keys | Created at (UTC) |
+--------------------------------------+----------+-------------+--------------+------------------+
| 0f0c0988-80c1-9362-11c1-b06909a3a53c | ¤aaa | 7 | 0 | |
| 0f91ac29-22bf-d72b-1430-9240d700f928 | John Doe | 3 | 0 | 2024-03-30 21:15 |
+--------------------------------------+----------+-------------+--------------+------------------+

And we can check the keypairs present in a specific keystore, this way:

$ flightbox foreign-keystore view 0f0c0988-80c1-9362-11c1-b06909a3a53c
+----------------------------+---+
| Property | Value |
+----------------------------+---+
keystore_uid	0f0c0988-80c1-9362-11c1-b06909a3a53c
keystore_owner	¤aaa
keystore_creation_datetime	
keypair_identifiers	RSA_OAEP 0f0c0989-1111-a226-c471-99cbb2d203c3
	RSA_OAEP 0f0c0989-a4fa-7c15-0b07-932729d9dc5b
	RSA_OAEP 0f0c0989-e6ae-f533-d92a-cc2dc651acb8
	RSA_OAEP 0f0c098b-5d2f-633c-167b-a8d5c86067ff
	RSA_OAEP 0f0c098c-47a6-6a2e-7071-f28f97c3093a
	RSA_OAEP 0f0c098c-ce02-7828-a519-45e6df84a25f
	RSA_OAEP 0f0c098d-59a3-1061-92a0-fcd9549a7dac
+----------------------------+---+

We can later delete the foreign keystore with flightbox foreign-keystore delete 0f0c0988-80c1-9362-11c1-b06909a3a53c, which is the same as manually deleting the folder deep inside the keystore pool.

Generating simple cryptoconfs

Now that we have locally registered some trustees, it's time to specify how they should protect our data, how they should become our "key guardians". This happens with a cryptoconf, a JSON cryptainer template recursively describing the different layers of encryption to be used on data and on keys, as well as the signatures to apply.

Cryptoconf can be very complex; but for some low-depth, signatureless cases, we can use the CLI to generate a cryptoconf for us.

For example, imagine we want to encrypt the data using the AES-CBC cipher, and then protect the (random) secret key of this cipher using a keypair of the trustee imported from the web gateway.

$ flightbox cryptoconf generate-simple add-payload-cipher-layer --sym-cipher-algo AES_CBC add-key-cipher-layer --asym-cipher-algo RSA_OAEP --trustee-type authenticator --keystore-uid 0f0c0988-80c1-9362-11c1-b06909a3a53c --keychain-uid 0f0c0989-1111-a226-c471-99cbb2d203c3
{
 "payload_cipher_layers": [
 {
 "key_cipher_layers": [
 {
 "key_cipher_algo": "RSA_OAEP",
 "key_cipher_trustee": {
 "keystore_uid": {
 "$binary": {
 "base64": "DwwJiIDBk2IRwbBpCaOlPA==",
 "subType": "04"
 }
 },
 "trustee_type": "authenticator"
 },
 "keychain_uid": {
 "$binary": {
 "base64": "DwwJiRERoibEcZnLstIDww==",
 "subType": "04"
 }
 }
 }
],
 "payload_cipher_algo": "AES_CBC",
 "payload_signatures": []
 }
]
}

The UUIDs that we selected are well there, even if unrecognizable in the $binary/base64 format of the JSON.

Hint

What are the keychain UIDs added above?

They uniquely identify a keypair for a given algorithm and trustee.

Each cryptainer has a root keychain UID, autogenerated if not provided by the cryptoconf. This default keychain UID is sufficient for the local-keyfactory trustee, since it will generate new keypairs on demand. But for each authenticator trustees, the set of available keypairs is already determined; so we must choose the keypair that we want to rely on, by providing its keychain UID at trustee level.

We can go farther, and decide that we want two layers of data encryption:

	one protected by an autogenerated local key

	the other protected by a shared secret between two authenticators, any of these two being sufficient to decrypt the data.

Here is how such a configuration could be generated:

$ flightbox cryptoconf generate-simple
 add-payload-cipher-layer --sym-cipher-algo AES_CBC
 add-key-cipher-layer --asym-cipher-algo RSA_OAEP --trustee-type local_keyfactory
 add-payload-cipher-layer --sym-cipher-algo CHACHA20_POLY1305
 add-key-shared-secret --threshold 1
 add-key-shard --asym-cipher-algo RSA_OAEP --trustee-type authenticator --keystore-uid 0f0c0988-80c1-9362-11c1-b06909a3a53c --keychain-uid 0f0c0989-1111-a226-c471-99cbb2d203c3
 add-key-shard --asym-cipher-algo RSA_OAEP --trustee-type authenticator --keystore-uid 7a25db2c-4c4e-42bb-a064-8da2007a4fd7 --keychain-uid 8c57e283-308a-4c78-86f9-ee6176757a6f
 > shared-secret-cryptoconf.json``

And here is the resulting cryptoconf structure:

$ flightbox cryptoconf summarize sophisticated-cryptoconf.json

Data encryption layer 1: AES_CBC
 Key encryption layers:
 RSA_OAEP via trustee 'local device'
 Signatures: None
Data encryption layer 2: CHACHA20_POLY1305
 Key encryption layers:
 Shared secret with threshold 1:
 Shard 1 encryption layers:
 RSA_OAEP via trustee 'authenticator 0f0c0988-80c1-9362-11c1-b06909a3a53c'
 Shard 2 encryption layers:
 RSA_OAEP via trustee 'authenticator 7a25db2c-4c4e-42bb-a064-8da2007a4fd7'
 Signatures: None

If we want a logical AND instead of a logical OR between the two authenticator-based trustees, either we increase the threshold to 2, or we apply the trustee protections one after the other, like this:

$ flightbox cryptoconf generate-simple add-payload-cipher-layer --sym-cipher-algo AES_CBC
 add-key-cipher-layer --asym-cipher-algo RSA_OAEP --trustee-type authenticator --keystore-uid 0f0c0988-80c1-9362-11c1-b06909a3a53c --keychain-uid 0f0c0989-1111-a226-c471-99cbb2d203c3 --sym-cipher-algo AES_EAX
 add-key-cipher-layer --asym-cipher-algo RSA_OAEP --trustee-type authenticator --keystore-uid 7a25db2c-4c4e-42bb-a064-8da2007a4fd7 --keychain-uid 8c57e283-308a-4c78-86f9-ee6176757a6f
 > multikeylayer-cryptoconf.json

Which gives this structure:

$ flightbox cryptoconf summarize multikeylayer-cryptoconf.json

Data encryption layer 1: AES_CBC
 Key encryption layers:
 AES_EAX with subkey encryption layers:
 RSA_OAEP via trustee 'authenticator 0f0c0988-80c1-9362-11c1-b06909a3a53c'
 RSA_OAEP via trustee 'authenticator 7a25db2c-4c4e-42bb-a064-8da2007a4fd7'
 Signatures: None

Thus, the randomly generated AES-CBC is secured by the first trustee, and then the result of this encryption is fed to the second trustee, which secures it too.

Hint

Note that we used an hybrid encryption (AES-EAX/RSA-OAEP) for the first layer of key encryption; this is not mandatory, but it avoid stacking trustees directly one over the other in these "Key encryption layers".

When trustees are directly stacked, decryption is complicated because we must decrypt the Key through the upper layer, before being able to query the next trustee for authorization, using the now partially-decrypted Key.

When trustees are separated "leaves" of the cryptoconf/cryptainer tree, on the contrary, they can all be queried in parallel for authorizations, each one being fed its corresponding encrypted "Key" (here, respectively the encrypted AES-CBC and AES-EAX keys).

Note that a flightbox cryptoconf validate <file> command is available, to check JSON cryptoconfs that you have generated by other means.

We haven't evocated, in this tutorial, the "server-backed" trustees (trustee_type "jsonrpc_api" in cryptoconfs). They can be used as encryption/signature keypair providers, but the recorder device must be constantly connected to Internet, and their current decryption workflow offers low security, so we'd rather not use them for now.

Securely encrypting data

Now that we have dealt with trustees and cryptoconf, the rest is easy:

$ flightbox encrypt readme.rst --cryptoconf cryptoconf.json -o readme
Data file 'readme' successfully encrypted into storage cryptainer

Notice that we can choose the basename of the target cryptainer with -o.
There is also a --bundle option to output the cryptainer as a single file - handy if the input file is rather enough.

Managing cryptainers

The commands to list, summarize, validate, and delete cryptainers from the current "Cryptainer Storage" are quite straightforward:

$ flightbox cryptainer -h
Usage: flightbox cryptainer [OPTIONS] COMMAND [ARGS]...

 Manage encrypted containers

Options:
 -h, --help Show this message and exit.

Commands:
 decrypt Turn a cryptainer back into the original media file
 delete Delete a local cryptainer
 list List local cryptainers
 purge Delete oldest cryptainers per criteria
 summarize Display a summary of a cryptainer structure
 validate Validate a cryptainer structure

The purge command can combine multiple criteria to ensure that technical and legal constraints are met.
For example if we can only keep the cryptainers 30 days, and want to limit their count to 100 and their total space to 1000 MB, we can run:

$ flightbox cryptainer purge --max-age 30 --max-count 100 --max-quota 1000
Intentionally purging cryptainers
Cryptainers successfully deleted: 0

Finally, the decrypt command is not relevant for our new cryptoconfs, since it doesn't support the complex mix of passphrases and remote authorization requests necessary to reveal a Flightbox cryptainer. It's better to use some Revelation Station software, like that included in the W.A Recorder program of Witness Angel project.

Flightbox CLI Reference

flightbox

Flexible cryptographic toolkit for multi-tenant encryption and signature

flightbox [OPTIONS] COMMAND [ARGS]...

Options

	
-v, --verbosity <LVL>

	Either CRITICAL, ERROR, WARNING, INFO or DEBUG

	
-k, --keystore-pool <keystore_pool>

	Folder tree to store keystores (else ~/.witnessangel/keystore_pool is used)

	
-c, --cryptainer-storage <cryptainer_storage>

	Folder to store cryptainers (else ~/.witnessangel/cryptainers is used)

	
-g, --gateway-url <gateway_url>

	URL of the web registry endpoint

authenticator

Manage authenticator trustees

flightbox authenticator [OPTIONS] COMMAND [ARGS]...

create

Initialize an authenticator folder with a set of keypairs

The target directory must not exist yet, but its parent directory must exist.

Authenticator passphrase can be provided as WA_PASSPHRASE environment variable, else user will be prompted for it.

No constraints are applied to the lengths of the passphrase or other fields, so beware of security considerations!

flightbox authenticator create [OPTIONS] AUTHENTICATOR_DIR

Options

	
--keypair-count <keypair_count>

	Count of keypairs to generate (min 1)

	Default:

	3

	
--owner <owner>

	Required Name of the authenticator owner

	
--passphrase-hint <passphrase_hint>

	Required Non-sensitive hint to help remember the passphrase

Arguments

	
AUTHENTICATOR_DIR

	Required argument

delete

Delete an authenticator folder along with all its content

flightbox authenticator delete [OPTIONS] AUTHENTICATOR_DIR

Arguments

	
AUTHENTICATOR_DIR

	Required argument

validate

Verify the metadata and keypairs of an authenticator folder

Authenticator passphrase can be provided as WA_PASSPHRASE environment variable, else user will be prompted for it.

flightbox authenticator validate [OPTIONS] AUTHENTICATOR_DIR

Arguments

	
AUTHENTICATOR_DIR

	Required argument

view

View metadata and public keypair identifiers of an authenticator

The presence and validity of private keys isn't checked.

flightbox authenticator view [OPTIONS] AUTHENTICATOR_DIR

Options

	
-f, --format <format>

	
	Default:

	plain

	Options:

	plain | json

Arguments

	
AUTHENTICATOR_DIR

	Required argument

cryptainer

Manage encrypted containers

flightbox cryptainer [OPTIONS] COMMAND [ARGS]...

decrypt

Turn a cryptainer back into the original media file

This command is for test purposes only, since it only works with INSECURE cryptoconfs
where private keys are locally available, and not protected by passphrases.

For real world use cases, see the Witness Angel software suite (Authenticator, Revelation Station...).

flightbox cryptainer decrypt [OPTIONS] CRYPTAINER_NAME

Options

	
-o, --output-file <output_file>

	

Arguments

	
CRYPTAINER_NAME

	Required argument

delete

Delete a local cryptainer

flightbox cryptainer delete [OPTIONS] CRYPTAINER_NAME

Arguments

	
CRYPTAINER_NAME

	Required argument

list

List local cryptainers

flightbox cryptainer list [OPTIONS]

Options

	
-f, --format <format>

	
	Default:

	plain

	Options:

	plain | json

purge

Delete oldest cryptainers per criteria

flightbox cryptainer purge [OPTIONS]

Options

	
--max-age <max_age>

	Maximum age of cryptainer, in days

	
--max-count <max_count>

	Maximum count of cryptainers in storage

	
--max-quota <max_quota>

	Maximum total size of cryptainers, in MBs

summarize

Display a summary of a cryptainer structure

flightbox cryptainer summarize [OPTIONS] CRYPTAINER_NAME

Arguments

	
CRYPTAINER_NAME

	Required argument

validate

Validate a cryptainer structure

flightbox cryptainer validate [OPTIONS] CRYPTAINER_NAME

Arguments

	
CRYPTAINER_NAME

	Required argument

cryptoconf

Manage cryptographic configurations

flightbox cryptoconf [OPTIONS] COMMAND [ARGS]...

generate-simple

Generate a simple cryptoconf using subcommands

flightbox cryptoconf generate-simple [OPTIONS] COMMAND1 [ARGS]... [COMMAND2
 [ARGS]...]...

Options

	
--keychain-uid <keychain_uid>

	Default UID for asymmetric keys

add-key-cipher-layer

Add a layer of asymmetric encryption of the key

A symmetric cipher can also be used, resulting in a hybrid encryption scheme.

flightbox cryptoconf generate-simple add-key-cipher-layer [OPTIONS]

Options

	
--asym-cipher-algo <asym_cipher_algo>

	Required Asymmetric algorithms for key encryption

	Options:

	RSA_OAEP

	
--trustee-type <trustee_type>

	Required Kind of key-guardian used

	Options:

	local_keyfactory | authenticator

	
--keystore-uid <keystore_uid>

	UID of the key-guardian (only for authenticators)

	
--keychain-uid <keychain_uid>

	Overridden UID for asymmetric key

	
--sym-cipher-algo <sym_cipher_algo>

	Optional intermediate symmetric cipher, to avoid stacking trustees

	Options:

	AES_CBC | AES_EAX | CHACHA20_POLY1305

add-key-shard

Add a shard configuration to a shared secret

flightbox cryptoconf generate-simple add-key-shard [OPTIONS]

Options

	
--asym-cipher-algo <asym_cipher_algo>

	Required Asymmetric algorithms for key encryption

	Options:

	RSA_OAEP

	
--trustee-type <trustee_type>

	Required Kind of key-guardian used

	Options:

	local_keyfactory | authenticator

	
--keystore-uid <keystore_uid>

	UID of the key-guardian (only for authenticators)

	
--keychain-uid <keychain_uid>

	Overridden UID for asymmetric key

	
--sym-cipher-algo <sym_cipher_algo>

	Optional intermediate symmetric cipher, to avoid stacking trustees

	Options:

	AES_CBC | AES_EAX | CHACHA20_POLY1305

add-key-shared-secret

Transform a key into a shared secret

flightbox cryptoconf generate-simple add-key-shared-secret
 [OPTIONS]

Options

	
--threshold <threshold>

	Required Number of key-guardians required for decryption of the secret

add-payload-cipher-layer

Add a layer of symmetric encryption of the data

The random symmetric key used for that encryption will then have to be protected by asymmetric encryption.

flightbox cryptoconf generate-simple add-payload-cipher-layer
 [OPTIONS]

Options

	
--sym-cipher-algo <sym_cipher_algo>

	Required Symmetric algorithms for payload encryption

	Options:

	AES_CBC | AES_EAX | CHACHA20_POLY1305

summarize

Display a summary of a cryptoconf structure

flightbox cryptoconf summarize [OPTIONS] CRYPTOCONF_FILE

Arguments

	
CRYPTOCONF_FILE

	Required argument

validate

Ensure that a cryptoconf structure is valid

flightbox cryptoconf validate [OPTIONS] CRYPTOCONF_FILE

Arguments

	
CRYPTOCONF_FILE

	Required argument

encrypt

Turn a media file into a secure container

flightbox encrypt [OPTIONS] INPUT_FILE

Options

	
-o, --output-basename <output_basename>

	Basename of the cryptainer storage output file

	
-c, --cryptoconf <cryptoconf>

	Json crypotoconf file

	
--bundle

	Combine cryptainer metadata and payload

Arguments

	
INPUT_FILE

	Required argument

foreign-keystore

Manage locally imported keystores

flightbox foreign-keystore [OPTIONS] COMMAND [ARGS]...

delete

Delete a locally imported keystore

flightbox foreign-keystore delete [OPTIONS] KEYSTORE_UID

Arguments

	
KEYSTORE_UID

	Required argument

import

Import a remote keystore

flightbox foreign-keystore import [OPTIONS]

Options

	
--from-usb

	Fetch authenticators from plugged USB devices

	
--from-path <from_path>

	Fetch authenticator from folder path

	
--from-gateway <from_gateway>

	Fetch authenticator by uid from gateway

	
--include-private-keys

	Import private keys when available

list

List locally imported keystores

flightbox foreign-keystore list [OPTIONS]

Options

	
-f, --format <format>

	
	Default:

	plain

	Options:

	plain | json

view

View metadata and public keypair identifiers of an imported keystore

The presence and validity of private keys isn't checked.

flightbox foreign-keystore view [OPTIONS] KEYSTORE_UID

Options

	
-f, --format <format>

	
	Default:

	plain

	Options:

	plain | json

Arguments

	
KEYSTORE_UID

	Required argument

Selected algorithms and formats

Here are the ciphers, protocols, data formats currently included in the Wacryptolib.
The system is design so that new ones can easily be integrated, e.g. post-quantic ciphers, more compact data formats, etc.

Symmetric ciphers

	AES with CBC (cipher block chaining) mode. This mode applies a XOR operation between each block of plaintext and the previous ciphertext block, before encrypting it. As a result, the entire validity of all preceding blocks is contained in the immediately previous ciphertext block. This cipher uses an initialization vector (IV) of a certain length. The ciphertext is not authenticated, so its modification wouldn't be immediately visible when decrypting.

	AES with EAX (encrypt-then-authenticate-then-translate) mode : it is an Authenticated Encryption with Associated Data (AEAD) algorithm designed to simultaneously provide both authentication and privacy of the message.
The reference implementation uses AES in CTR mode for encryption, combined with AES OMAC for authentication.
EAX is a two-pass scheme, which means that encryption and authentication are done in separate operations.
This algorithm has several desirable attributes, notably:

	provable security (dependent on the security of the underlying primitive cipher);

	message expansion is minimal, being limited to the overhead of the tag length;

	using CTR mode means the cipher needs to be implemented only for encryption, simplifying implementation;

	the algorithm is "on-line", that means that it can process a stream of data, using constant memory, without knowing total data length in advance;

	the algorithm can process static Associated Data (AD), like session parameters in a communication;

	ChaCha20 with Poly1305: while this algorithm is mainly used for encryption, its core is a pseudo-random number generator. The cipher text is obtained by XOR'ing the plain text with a pseudo-random stream. Provided you never use the same nonce with the same key twice, you can treat that stream as a one time pad. This makes it very simple: unlike block ciphers, you don't have to worry about padding, and decryption is the same XOR operation as encryption. The Poly1305 authenticator prevents the insertion of fake messages into the stream.

Asymmetric ciphers

	RSA (Rivest–Shamir–Adleman) is one of the first public-key cryptosystems and is widely used for secure data transmission. In such a cryptosystem, the encryption key is public and it is different from the decryption key which is kept secret (private). In RSA, this asymmetry is based on the practical difficulty of the factorization of the product of two large prime numbers, the "factoring problem".
A user of RSA creates and then publishes a public key based on two large prime numbers, along with an auxiliary value. The prime numbers must be kept secret. Anyone can use the public key to encrypt a message, but with currently published methods, and if the public key is large enough, only someone with knowledge of the prime numbers can decode the message feasibly. We use OAEP (Optimal Asymmetric Encryption Padding) as padding scheme to strengthen RSA encryption.

Signature algorithms

Signature is used to guarantee integrity and non-repudiation. Digital signatures are based on public key cryptography: the party that signs a message holds the private key, the one that verifies the signature holds the public key.

The cryptolib actually signs a hash of the message data concatenated with a timestamp.

	PSS (Probabilistic Signature Scheme) : The algorithm used to sign a plaintext is almost the same as the one used to cipher a plaintext in RSA; except that the private key is used to sign, and the public key to check if the signature is authentic.

	DSS (Digital Signature Standard): This algorithm works in the framework of DSA public-key cryptosystems and is based on the algebraic properties of modular exponentiation, together with the discrete logarithm problem, which is considered to be computationally intractable. The algorithm uses a key pair consisting of a public key and a private key. The private key is used to generate a digital signature for a message, and such a signature can be verified by using the signer's corresponding public key. The digital signature provides message authentication (the receiver can verify the origin of the message), integrity (the receiver can verify that the message has not been modified since it was signed) and non-repudiation (the sender cannot falsely claim that they have not signed the message). Also works with ECC keys, based on elliptic curves.

Hashing functions

Cryptographic hash functions take arbitrary binary strings as input, and produce a random-like fixed-length output (called digest or hash value). It is practically infeasible to derive the original input data from the digest. In other words, the cryptographic hash function is one-way (pre-image resistance). Given the digest of one message, it is also practically infeasible to find another message (second pre-image) with the same digest (weak collision resistance).

	
wacryptolib.utilities.SUPPORTED_HASH_ALGOS = ['SHA256', 'SHA512', 'SHA3_256', 'SHA3_512']

	Hash algorithms authorized for use with hash_message()

Storage formats

Serialization of cryptoconfs and cryptainers is done using Pymongo's Extended Json format (bson might one day be used as an alternative). This Json dialect indeed supports many more data types: bytes, UUIDs, datetimes...

Hint: to convert base64 UUIDs stored in containers to a more natural hexadecimal form, use a converter like https://base64.guru/converter/decode/hex

The encrypted payload of cryptainers can either be stored as base64 string inside the JSON cryptainer (inline mode), or in a raw ciphertext file nearby (offloaded mode).

Unless specified otherwise, UTF8 is assumed as the encoding of all text data (ex. for decryption reports).

Communication protocols

Communication with remote APIs is done using JSON-RPC, but still with Pymongo's Extended Json dialect.

Errors are reported using our custom StatusSlugs [https://www.freecodecamp.org/news/api-error-codes-are-prehistory-try-this-instead-b3abd156f9fa/] implementation, which facilitate transmitting hierachical exceptions in webservices.

In the future, other API types (ex. RESTful) could be implemented similarly, to facilitate integration with other languages and platfoms.

Notes on safety and performance

	Encryption tags/macs should be computed on ciphertexts (encrypted payloads), not plaintext (initial data). Attempting decryption on crafted payloads is indeed an important attack vector, so integrity checks should occur before decryption, thanks to proper tags/macs. We shall rely on modern ciphers with AEAD (for Authenticated Encryption with Associated Data) to have both confidentiality and integrity in the same process.

	Security resides in the cryptosystem as a whole, not in individual algorithms. So it's more important to ensure that each workflow step is immune to main attack vectors, than to relentlessly seek safer algorithms and longer keys.

	Algorithms used should be part of easily accessible headers, not embedded into layers of multi-encrypted data. It is indeed more important to review these selected algorithms and detect broken/obsolete ones, than to hide them from potential attackers to attempt "security through obscurity".

	Compression of content must occur BEFORE encryption, since ciphertexts naturally have much higher entropy than plaintext. In particular, media data can often achieve high compression ratio at the cost of some accuracy loss.

API Documentation

Contents:

	Cryptainer
	Cryptainer object processing
	encrypt_payload_into_cryptainer()

	decrypt_payload_from_cryptainer()

	extract_metadata_from_cryptainer()

	get_cryptoconf_summary()

	CryptainerEncryptionPipeline

	encrypt_payload_and_stream_cryptainer_to_filesystem()

	Validation utilities
	check_cryptainer_sanity()

	check_cryptoconf_sanity()

	Filesystem operations
	dump_cryptainer_to_filesystem()

	load_cryptainer_from_filesystem()

	delete_cryptainer_from_filesystem()

	get_cryptainer_size_on_filesystem()

	Cryptainer storage system
	ReadonlyCryptainerStorage

	CryptainerStorage

	Trustee operations
	get_trustee_proxy()

	gather_trustee_dependencies()

	request_decryption_authorizations()

	Trustee
	API for trustee services
	TrusteeApi

	ReadonlyTrusteeApi

	Authenticator
	initialize_authenticator()

	is_authenticator_initialized()

	Authentication device
	list_available_authdevices()

	Key generation
	Public API
	SUPPORTED_ASYMMETRIC_KEY_ALGOS

	generate_keypair()

	load_asymmetric_key_from_pem_bytestring()

	SUPPORTED_SYMMETRIC_KEY_ALGOS

	generate_symkey()

	Private API
	RSA

	DSA

	ECC

	Key storage
	Keystore
	load_keystore_metadata()

	InMemoryKeystore

	FilesystemKeystore

	Keystore pools
	InMemoryKeystorePool

	FilesystemKeystorePool

	Signature
	SUPPORTED_SIGNATURE_ALGOS

	sign_message()

	verify_message_signature()

	Encryption
	Public API
	SUPPORTED_CIPHER_ALGOS

	AUTHENTICATED_CIPHER_ALGOS

	STREAMABLE_CIPHER_ALGOS

	encrypt_bytestring()

	decrypt_bytestring()

	PayloadEncryptionPipeline

	Private API
	AES with CBC mode

	AES with EAX mode

	ChaCha20_Poly1305

	RSA - PKCS#1 OAEP

	Shared secret
	split_secret_into_shards()

	recombine_secret_from_shards()

	Sensor
	Aggregation of records into binary archives
	TarfileRecordAggregator

	Base classes for poller/pusher sensors
	JsonDataAggregator

	PeriodicValuePoller

	Simultaneous management of multiple sensors
	SensorManager

	Json-rpc client
	JsonRpcProxy

	status_slugs_response_error_handler()

	Utilities
	Task handling
	TaskRunnerStateMachineBase()

	PeriodicTaskHandler()

	Hashing
	SUPPORTED_HASH_ALGOS

	hash_message()

	Serialization
	dump_to_json_str()

	load_from_json_str()

	dump_to_json_bytes()

	load_from_json_bytes()

	dump_to_json_file()

	load_from_json_file()

	Miscellaneous
	generate_uuid0()

	split_as_chunks()

	recombine_chunks()

	Exceptions
	FunctionalError

	ExistenceError

	KeyDoesNotExist

	KeyAlreadyExists

	KeystoreDoesNotExist

	KeystoreAlreadyExists

	KeystoreMetadataDoesNotExist

	AuthenticationError

	AuthorizationError

	OperationNotSupported

	CryptographyError

	EncryptionError

	DecryptionError

	DecryptionIntegrityError

	SignatureCreationError

	SignatureVerificationError

	KeyLoadingError

	ValidationError

	SchemaValidationError

	Error handling
	StatusSlugMapper
	StatusSlugMapper.gather_exception_subclasses()

	StatusSlugMapper.get_closest_exception_class_for_status_slugs()

	StatusSlugMapper.slugify_exception_class()

	gather_exception_subclasses()

	slugify_exception_class()

	construct_status_slug_mapper()

	get_closest_exception_class_for_status_slugs()

	Scaffolding for tests
	check_keystore_basic_get_set_api()

	check_keystore_free_keys_api()

	check_keystore_free_keys_concurrency()

	check_sensor_state_machine()

Cryptainer

This module provides utilities to write and read encrypted cryptainers, which themselves use
encryption/signing keys from trustees.

Cryptainer object processing

	
wacryptolib.cryptainer.encrypt_payload_into_cryptainer(payload, *, cryptoconf, cryptainer_metadata, keystore_pool=None)

	Turn a raw payload into a secure cryptainer, which can only be decrypted with
the agreement of the owner and third-party trustees.

	Parameters:

	
	payload (Union[bytes, BinaryIO]) -- bytestring of media (image, video, sound...) or readable file object (file immediately deleted then)

	cryptoconf (dict) -- tree of specific encryption settings

	cryptainer_metadata (Optional[dict]) -- dict of metadata describing the payload (remains unencrypted in cryptainer)

	keystore_pool (Optional[KeystorePoolBase]) -- optional key storage pool, might be required by cryptoconf

	Return type:

	dict

	Returns:

	dict of cryptainer

	
wacryptolib.cryptainer.decrypt_payload_from_cryptainer(cryptainer, *, keystore_pool=None, passphrase_mapper=None, verify_integrity_tags=True, gateway_urls=None, revelation_requestor_uid=None)

	Decrypt a cryptainer with the help of third-parties.

	Parameters:

	
	cryptainer (dict) -- the cryptainer tree, which holds all information about involved keys

	keystore_pool (Optional[KeystorePoolBase]) -- optional key storage pool

	passphrase_mapper (Optional[dict]) -- optional dict mapping trustee IDs to their lists of passphrases

	verify_integrity_tags (bool) -- whether to check MAC tags of the ciphertext

	Return type:

	tuple

	Returns:

	tuple (data)

	
wacryptolib.cryptainer.extract_metadata_from_cryptainer(cryptainer)

	Read the metadata tree (possibly None) from a cryptainer.

CURRENTLY CRYPTAINER METADATA ARE NEITHER ENCRYPTED NOR AUTHENTIFIED.

	Parameters:

	cryptainer (dict) -- the cryptainer tree, which also holds cryptainer_metadata about encrypted content

	Return type:

	Optional[dict]

	Returns:

	dict

	
wacryptolib.cryptainer.get_cryptoconf_summary(cryptoconf_or_cryptainer)

	Returns a string summary of the layers of encryption/signature of a cryptainer or a configuration tree.

	
class wacryptolib.cryptainer.CryptainerEncryptionPipeline(cryptainer_filepath, *, cryptoconf, cryptainer_metadata, keystore_pool=None, dump_initial_cryptainer=True)

	Bases: object

Helper which prebuilds a cryptainer without signatures nor payload,
fills its OFFLOADED ciphertext file chunk by chunk, and then
dumps the final cryptainer (with signatures) to disk.

	
wacryptolib.cryptainer.encrypt_payload_and_stream_cryptainer_to_filesystem(payload, *, cryptainer_filepath, cryptoconf, cryptainer_metadata, keystore_pool=None)

	Optimized version which directly streams encrypted payload to offloaded file,
instead of creating a whole cryptainer and then dumping it to disk.

The cryptoconf used must be streamable with an EncryptionPipeline!

	Return type:

	None

Validation utilities

	
wacryptolib.cryptainer.check_cryptainer_sanity(cryptainer, jsonschema_mode=False)

	Validate the format of a cryptainer.

	Parameters:

	jsonschema_mode -- If True, the cryptainer must have been loaded as raw json
(with $binary, $numberInt and such) and will be checked using a jsonschema validator.

	
wacryptolib.cryptainer.check_cryptoconf_sanity(cryptoconf, jsonschema_mode=False)

	Validate the format of a conf.

	Parameters:

	jsonschema_mode -- If True, the cryptainer must have been loaded as raw json
(with $binary, $numberInt and such) and will be checked using a jsonschema validator.

Filesystem operations

	
wacryptolib.cryptainer.dump_cryptainer_to_filesystem(cryptainer_filepath, cryptainer, offload_payload_ciphertext=True)

	Dump a cryptainer to a file path, overwriting it if existing.

If offload_payload_ciphertext, actual encrypted payload is dumped to a separate bytes file nearby the json-formatted cryptainer.

	Return type:

	None

	
wacryptolib.cryptainer.load_cryptainer_from_filesystem(cryptainer_filepath, include_payload_ciphertext=True)

	Load a json-formatted cryptainer from a file path, potentially loading its offloaded ciphertext from a separate nearby bytes file.

Field payload_ciphertext is only present in result dict if include_payload_ciphertext is True.

	Return type:

	dict

	
wacryptolib.cryptainer.delete_cryptainer_from_filesystem(cryptainer_filepath)

	Delete a cryptainer file and its potential offloaded payload file.

	
wacryptolib.cryptainer.get_cryptainer_size_on_filesystem(cryptainer_filepath)

	Return the total size in bytes occupied by a cryptainer and its potential offloaded payload file.

Cryptainer storage system

	
class wacryptolib.cryptainer.ReadonlyCryptainerStorage(cryptainer_dir, keystore_pool=None)

	Bases: object

This class provides read access to a directory filled with cryptainers..

	Parameters:

	
	cryptainer_dir (Path) -- the folder where cryptainer files are stored

	keystore_pool (Optional[KeystorePoolBase]) -- optional KeystorePool, which might be required by current cryptoconf

	
check_cryptainer_sanity(cryptainer_name_or_idx)

	Allows the validation of a cryptainer structure

	
decrypt_cryptainer_from_storage(cryptainer_name_or_idx, passphrase_mapper=None, verify_integrity_tags=True, gateway_urls=None, revelation_requestor_uid=None)

	Return the decrypted content of the cryptainer cryptainer_name_or_idx (which must be in list_cryptainer_names(),
or an index suitable for this sorted list).

	Return type:

	tuple

	
list_cryptainer_names(as_sorted_list=False, as_absolute_paths=False, finished=True)

	Returns the list of encrypted cryptainers present in storage,
sorted by name or not, absolute or not, as Path objects.

If finished ìs None, both finished and pending cryptainers are listed.

	
list_cryptainer_properties(as_sorted_list=False, with_creation_datetime=False, with_age=False, with_size=False, with_offloaded=False, finished=True)

	Returns an list of dicts (unsorted by default) having the fields "name", [age] and [size], depending on requested properties.

	
load_cryptainer_from_storage(cryptainer_name_or_idx, include_payload_ciphertext=True)

	Return the encrypted cryptainer dict for cryptainer_name_or_idx (which must be in list_cryptainer_names(),
or an index suitable for this sorted list).

Only FINISHED cryptainers are expected to be loaded.

	Return type:

	dict

	
class wacryptolib.cryptainer.CryptainerStorage(cryptainer_dir, keystore_pool=None, default_cryptoconf=None, max_cryptainer_quota=None, max_cryptainer_count=None, max_cryptainer_age=None, max_workers=1, offload_payload_ciphertext=True)

	Bases: ReadonlyCryptainerStorage

This class encrypts file streams and stores them into filesystem, in a thread-safe way.

Exceeding cryptainers are automatically purged when enqueuing new files or waiting for idle state.
A thread pool is used to encrypt files in the background.

	Parameters:

	
	cryptainers_dir -- the folder where cryptainer files are stored

	keystore_pool (Optional[KeystorePoolBase]) -- optional KeystorePool, which might be required by current cryptoconf

	default_cryptoconf (Optional[dict]) -- cryptoconf to use when none is provided when enqueuing payload

	max_cryptainer_quota (Optional[int]) -- if set, cryptainers are deleted if they exceed this size in bytes

	max_cryptainer_count (Optional[int]) -- if set, oldest exceeding cryptainers (time taken from their name, else their file-stats) are automatically erased

	max_cryptainer_age (Optional[timedelta]) -- if set, cryptainers exceeding this age (taken from their name, else their file-stats) in days are automatically erased

	max_workers (int) -- count of worker threads to use in parallel

	offload_payload_ciphertext -- whether actual encrypted payload must be kept separated from structured cryptainer file

	
create_cryptainer_encryption_stream(filename_base, cryptainer_metadata, cryptoconf=None, dump_initial_cryptainer=True, cryptainer_encryption_stream_class=None, cryptainer_encryption_stream_extra_kwargs=None)

	Create and return a cryptainer encryption stream.

Purges exceeding cryptainers and pending results beforehand.

	
encrypt_file(filename_base, payload, cryptainer_metadata, cryptoconf=None)

	Synchronously encrypt the provided payload into cryptainer storage.

Does NOT purge exceeding cryptainers and pending results beforehand.

Returns the cryptainer basename.

	Return type:

	str

	
enqueue_file_for_encryption(filename_base, payload, cryptainer_metadata, cryptoconf=None)

	Enqueue a payload for asynchronous encryption and storage.

Purges exceeding cryptainers and pending results beforehand.

The filename of final cryptainer might be different from provided one.
Deware, target cryptainer with the same constructed name might be overwritten.

	Parameters:

	
	payload -- Bytes string, or a file-like object open for reading, which will be automatically closed.

	cryptainer_metadata -- Dict of metadata added (unencrypted) to cryptainer.

	keychain_uid -- If provided, replaces autogenerated default keychain_uid for this cryptainer.

	cryptoconf -- If provided, replaces default cryptoconf for this cryptainer.

	
wait_for_idle_state()

	Wait for each pending future to be completed.

Trustee operations

	
wacryptolib.cryptainer.get_trustee_proxy(trustee, keystore_pool)

	Return an TrusteeApi subclass instance (or proxy) depending on the content of trustee dict.

	
wacryptolib.cryptainer.gather_trustee_dependencies(cryptainers)

	Analyse a cryptainer and return the trustees (and their keypairs) used by it.

	Return type:

	dict

	Returns:

	dict with lists of keypair identifiers in fields "encryption" and "signature".

	
wacryptolib.cryptainer.request_decryption_authorizations(trustee_dependencies, keystore_pool, request_message, passphrases=None)

	Loop on encryption trustees and request decryption authorization for all the keypairs that they own.

	Return type:

	dict

	Returns:

	dict mapping trustee ids to authorization result dicts.

Trustee

This module provides base classes and utilities for trustee actors.

API for trustee services

	
class wacryptolib.trustee.TrusteeApi(keystore)

	Bases: object

This is the API meant to be exposed by trustee webservices, to allow end users to create safely encrypted cryptainers.

Subclasses must add their own permission checking, especially so that no decryption with private keys can occur
outside the scope of a well defined legal procedure.

	
decrypt_with_private_key(*, keychain_uid, cipher_algo, cipherdict, passphrases=None, cryptainer_metadata=None)

	Return the message (probably a symmetric key) decrypted with the corresponding key,
as bytestring. Here again passphrases and cryptainer_metadata can be provided.

Raises if key existence, authorization or passphrase errors occur.

	Return type:

	bytes

	
fetch_public_key(*, keychain_uid, key_algo, must_exist=False)

	Return a public key in PEM format bytestring, that caller shall use to encrypt its own symmetric keys,
or to check a signature.

If must_exist is True, key is not autogenerated, and a KeyDoesNotExist might be raised.

	Return type:

	bytes

	
get_message_signature(*, message, keychain_uid, signature_algo)

	Return a signature structure corresponding to the provided key and signature types.

	Return type:

	dict

	
request_decryption_authorization(keypair_identifiers, request_message, passphrases=None, cryptainer_metadata=None)

	Send a list of keypairs for which decryption access is requested, with the reason why.

If request is immediately denied, an exception is raised, else the status of the authorization process
(process which might involve several steps, including live encounters) is returned.

	Parameters:

	
	keypair_identifiers (Sequence) -- list of dicts with (keychain_uid, key_algo) indices to authorize

	request_message (str) -- user text explaining the reasons for the decryption (and the legal procedures involved)

	passphrases (Optional[Sequence]) -- optional list of passphrases to be tried on private keys

	cryptainer_metadata (Optional[dict]) -- metadata of the concerned cryptainer

	Return type:

	dict

	Returns:

	a dict with at least a string field "response_message" detailing the status of the request.

	
class wacryptolib.trustee.ReadonlyTrusteeApi(keystore)

	Bases: TrusteeApi

Alternative Trustee API which relies on a fixed set of keys (e.g. imported from a key-device).

This version never generates keys by itself, whatever the values of method parameters like must_exist.

Authenticator

This module initializes and loads "authenticators", i.e sets of protected keys stored in a folder and belonging to a Key Guardian.

	
wacryptolib.authenticator.initialize_authenticator(authenticator_dir, keystore_owner, keystore_passphrase_hint)

	BEWARE - PRIVATE API FOR NOW

Initialize a specific folder by creating a metadata file in it.

The folder must not be already initialized.
It may not exist yet, but its parents must exist.

	Parameters:

	
	authenticator_dir (Path) -- Folder where the metadata file is expected.

	keystore_owner (str) -- owner name to store in device.

	keystore_passphrase_hint (str) -- hint for the passphrase used on private keys.

	Return type:

	dict

	Returns:

	(dict) Metadata for this authenticator.

	
wacryptolib.authenticator.is_authenticator_initialized(authenticator_dir)

	BEWARE - PRIVATE API FOR NOW

Check if an authenticator folder SEEMS initialized.

Doesn't actually load the authenticator metadata file, nor check related keypairs.

	Parameters:

	authenticator_dir (Path) -- (Path) folder where the metadata file is expected.

	Returns:

	(bool) True if and only if the authenticator seems initialized.

Authentication device

This module detects potential "authentication devices", typically USB keys which can store the owner's authenticator.

	
wacryptolib.authdevice.list_available_authdevices()

	Generate a list of dictionaries representing mounted partitions of USB keys.

	Return type:

	list

	Returns:

	list of dicts having at least these fields:

	"device_type" (str): device type like "USBSTOR"

	"partition_label" (str): possibly empty, label of the partition

	"partition_mountpoint" (str): mount point of device on the filesystem.

	"filesystem_format" (str): lowercase character string for filesystem type, like "ext2", "fat32" ...

	"filesystem_size" (int): filesystem size in bytes

	"authenticator_dir" (Path): Theoretical absolute path to the authenticator (might not exist yet)

Key generation

This module is dedicated to key generation, especially asymmetric public/private key pairs.

Note that keys are separated by use, thus keys of type RSA_OAEP (encryption) and RSA_PSS (signature) are different
even for the same keychain uid.

Public API

	
wacryptolib.keygen.SUPPORTED_ASYMMETRIC_KEY_ALGOS = ['DSA_DSS', 'ECC_DSS', 'RSA_OAEP', 'RSA_PSS']

	These values can be used as 'key_algo' for asymmetric key generation.

	
wacryptolib.keygen.generate_keypair(*, key_algo, serialize=True, key_length_bits=2048, curve='p521', passphrase=None)

	Generate a (public_key, private_key) pair.

	Parameters:

	
	key_algo (str) -- name of the key type

	serialize -- indicates if key must be serialized as PEM string (else it remains a python object)

	passphrase (Optional[AnyStr]) -- bytestring used for private key export (requires serialize=True)

Other arguments are used or not depending on the chosen key_algo.

	Return type:

	dict

	Returns:

	dictionary with "private_key" and "public_key" fields as objects or PEM-format strings

	
wacryptolib.keygen.load_asymmetric_key_from_pem_bytestring(key_pem, *, key_algo, passphrase=None)

	Load a key (public or private) from a PEM-formatted bytestring.

	Parameters:

	
	key_pem (bytes) -- the key bytrestring

	key_algo (str) -- name of the key format

	Returns:

	key object

	
wacryptolib.keygen.SUPPORTED_SYMMETRIC_KEY_ALGOS = ['AES_CBC', 'AES_EAX', 'CHACHA20_POLY1305']

	These values can be used as 'key_algo' for symmetric key generation.

	
wacryptolib.keygen.generate_symkey(cipher_algo)

	Generate the strongest dict of keys/initializers possible for the wanted symmetric cipher,
as a dict.

	Return type:

	dict

Private API

The functions below are only documented for the details they give on specific arguments.

RSA

	
wacryptolib.keygen._generate_rsa_keypair_as_objects(key_length_bits)

	Generate a RSA (public_key, private_key) pair.

	Parameters:

	key_length_bits (int) -- length of the key in bits, must be superior to 2048.

	Return type:

	dict

	Returns:

	dictionary with "private_key" and "public_key" fields as objects.

DSA

	
wacryptolib.keygen._generate_dsa_keypair_as_objects(key_length_bits)

	Generate a DSA (public_key, private_key) pair.

DSA keypair is not used for encryption/decryption, only for signing.

	Parameters:

	key_length_bits (int) -- length of the key in bits, must be superior to 2048.

	Return type:

	dict

	Returns:

	dictionary with "private_key" and "public_key" fields as objects.

ECC

	
wacryptolib.keygen._generate_ecc_keypair_as_objects(curve)

	Generate an ECC (public_key, private_key) pair.

ECC keypair is not used for encryption/decryption, only for signing.

	Parameters:

	curve (str) -- curve chosen among p256, p384, p521 and maybe others.

	Return type:

	dict

	Returns:

	dictionary with "private_key" and "public_key" fields as objects.

Key storage

This module provides classes for the storage of asymmetric key pairs.

Keystore

Each of these key storages theoretically belongs to a single user.

	
wacryptolib.keystore.load_keystore_metadata(keystore_dir)

	Return the authenticator metadata dict stored in the given folder, after validating its format.

Raises KeystoreMetadataDoesNotExist if no metadata file is present.

Raises SchemaValidationError if keystore appears initialized, but has corrupted metadata.

	Return type:

	dict

	
class wacryptolib.keystore.InMemoryKeystore

	Bases: KeystoreReadWriteBase

Dummy key storage for use in tests, where keys are kepts only process-locally.

NOT MEANT TO BE THREAD-SAFE

	
add_free_keypair(*, key_algo, public_key, private_key)

	Store a pair of asymmetric keys into storage, free for subsequent attachment to an UUID.

	Parameters:

	
	key_algo (str) -- one of SUPPORTED_ASYMMETRIC_KEY_ALGOS

	public_key (bytes) -- public key in clear PEM format

	private_key (bytes) -- private key in PEM format (potentially encrypted)

	Return type:

	None

	
attach_free_keypair_to_uuid(*, keychain_uid, key_algo)

	Fetch one of the free keypairs of storage of type key_algo, and attach it to UUID keychain_uid.

If no free keypair is available, a KeyDoesNotExist is raised.

	Parameters:

	
	keychain_uid (UUID) -- unique ID of the keychain

	key_algo (str) -- one of SUPPORTED_ASYMMETRIC_KEY_ALGOS

	Return type:

	None

	Returns:

	public key of the keypair, in clear PEM format

	
get_free_keypairs_count(key_algo)

	Calculate the count of keypairs of type key_algo which are free for subsequent attachment to an UUID.

	Parameters:

	key_algo (str) -- one of SUPPORTED_ASYMMETRIC_KEY_ALGOS

	Return type:

	int

	Returns:

	count of free keypairs of said type

	
get_private_key(*, keychain_uid, key_algo)

	Fetch a private key from persistent storage.

	Parameters:

	
	keychain_uid (UUID) -- unique ID of the keychain

	key_algo (str) -- one of SUPPORTED_ASYMMETRIC_KEY_ALGOS

	Return type:

	bytes

	Returns:

	private key in PEM format (potentially passphrase-protected), or raise KeyDoesNotExist

	
get_public_key(*, keychain_uid, key_algo)

	Fetch a public key from persistent storage.

	Parameters:

	
	keychain_uid (UUID) -- unique ID of the keychain

	key_algo (str) -- one of SUPPORTED_ASYMMETRIC_KEY_ALGOS

	Return type:

	bytes

	Returns:

	public key in clear PEM format, or raise KeyDoesNotExist

	
list_keypair_identifiers()

	List identifiers of PUBLIC keys present in the storage, along with their potential private key existence.

Might raise an OperationNotSupported exception if not supported by this keystore.

	Return type:

	list

	Returns:

	a SORTED list of key information dicts with standard fields "keychain_uid" and "key_algo", as well as
a boolean "private_key_present" which is True if the related private key exists in storage.
Sorting is done by keychain_uid and then key_algo.

	
set_keypair(*, keychain_uid, key_algo, public_key, private_key)

	Store a pair of asymmetric keys into storage, attached to a specific UUID.

Must raise a KeyAlreadyExists exception if a public/private key already exists for these uid/type identifiers.

	Parameters:

	
	keychain_uid (UUID) -- unique ID of the keychain

	key_algo (str) -- one of SUPPORTED_ASYMMETRIC_KEY_ALGOS

	public_key (bytes) -- public key in clear PEM format

	private_key (bytes) -- private key in PEM format (potentially encrypted)

	Return type:

	None

	
set_private_key(*, keychain_uid, key_algo, private_key)

	Store a private key, which must not already exist - else a KeyAlreadyExists is raised.

Important : the PUBLIC key for this private key must already exist in the keystore,
else KeyDoesNotExist is raised.

	Parameters:

	
	keychain_uid -- unique ID of the keychain

	key_algo -- one of SUPPORTED_ASYMMETRIC_KEY_ALGOS

	private_key (bytes) -- private key in PEM format (potentially encrypted)

	Return type:

	None

	
set_public_key(*, keychain_uid, key_algo, public_key)

	Store a public key, which must not already exist - else KeyAlreadyExists is raised.

	Parameters:

	
	keychain_uid -- unique ID of the keychain

	key_algo -- one of SUPPORTED_ASYMMETRIC_KEY_ALGOS

	public_key (bytes) -- public key in clear PEM format

	Return type:

	None

	
class wacryptolib.keystore.FilesystemKeystore(keys_dir)

	Bases: ReadonlyFilesystemKeystore, KeystoreReadWriteBase

Filesystem-based key storage.

Protected by a process-wide lock, but not safe to use in multiprocessing environment, or in a process which can be brutally shutdown.
To prevent corruption, caller should only persist UUIDs when the key storage operation is successfully finished.

	
add_free_keypair(*, key_algo, public_key, private_key)

	Store a pair of asymmetric keys into storage, free for subsequent attachment to an UUID.

	Parameters:

	
	key_algo (str) -- one of SUPPORTED_ASYMMETRIC_KEY_ALGOS

	public_key (bytes) -- public key in clear PEM format

	private_key (bytes) -- private key in PEM format (potentially encrypted)

	Return type:

	None

	
attach_free_keypair_to_uuid(*, keychain_uid, key_algo)

	Fetch one of the free keypairs of storage of type key_algo, and attach it to UUID keychain_uid.

If no free keypair is available, a KeyDoesNotExist is raised.

	Parameters:

	
	keychain_uid (UUID) -- unique ID of the keychain

	key_algo (str) -- one of SUPPORTED_ASYMMETRIC_KEY_ALGOS

	Return type:

	None

	Returns:

	public key of the keypair, in clear PEM format

	
export_to_keystore_tree(include_private_keys=True)

	Export keystore metadata and keys (public and, if include_private_keys is true, private)
to a data tree.

	
get_free_keypairs_count(key_algo)

	Calculate the count of keypairs of type key_algo which are free for subsequent attachment to an UUID.

	Parameters:

	key_algo (str) -- one of SUPPORTED_ASYMMETRIC_KEY_ALGOS

	Return type:

	int

	Returns:

	count of free keypairs of said type

	
get_keystore_metadata(include_keypair_identifiers=False)

	Return a metadata dict for the filesystem keystore, or raise KeystoreMetadataDoesNotExist.

	
get_private_key(*, keychain_uid, key_algo)

	Fetch a private key from persistent storage.

	Parameters:

	
	keychain_uid (UUID) -- unique ID of the keychain

	key_algo (str) -- one of SUPPORTED_ASYMMETRIC_KEY_ALGOS

	Return type:

	bytes

	Returns:

	private key in PEM format (potentially passphrase-protected), or raise KeyDoesNotExist

	
get_public_key(*, keychain_uid, key_algo)

	Fetch a public key from persistent storage.

	Parameters:

	
	keychain_uid (UUID) -- unique ID of the keychain

	key_algo (str) -- one of SUPPORTED_ASYMMETRIC_KEY_ALGOS

	Return type:

	bytes

	Returns:

	public key in clear PEM format, or raise KeyDoesNotExist

	
import_from_keystore_tree(keystore_tree)

	Import keystore metadata and keys (public and, if included, private) fom a data tree.

If keystore already exists, it is completed with new keys, but metadata are untouched.

Returns True if and only if keystore was updated instead of created.

	Return type:

	bool

	
list_keypair_identifiers()

	List identifiers of PUBLIC keys present in the storage, along with their potential private key existence.

Might raise an OperationNotSupported exception if not supported by this keystore.

	Return type:

	list

	Returns:

	a SORTED list of key information dicts with standard fields "keychain_uid" and "key_algo", as well as
a boolean "private_key_present" which is True if the related private key exists in storage.
Sorting is done by keychain_uid and then key_algo.

	
set_keypair(*, keychain_uid, key_algo, public_key, private_key)

	Store a pair of asymmetric keys into storage, attached to a specific UUID.

Must raise a KeyAlreadyExists exception if a public/private key already exists for these uid/type identifiers.

	Parameters:

	
	keychain_uid (UUID) -- unique ID of the keychain

	key_algo (str) -- one of SUPPORTED_ASYMMETRIC_KEY_ALGOS

	public_key (bytes) -- public key in clear PEM format

	private_key (bytes) -- private key in PEM format (potentially encrypted)

	Return type:

	None

	
set_private_key(*, keychain_uid, key_algo, private_key)

	Store a private key, which must not already exist - else a KeyAlreadyExists is raised.

Important : the PUBLIC key for this private key must already exist in the keystore,
else KeyDoesNotExist is raised.

	Parameters:

	
	keychain_uid -- unique ID of the keychain

	key_algo -- one of SUPPORTED_ASYMMETRIC_KEY_ALGOS

	private_key (bytes) -- private key in PEM format (potentially encrypted)

	Return type:

	None

	
set_public_key(*, keychain_uid, key_algo, public_key)

	Store a public key, which must not already exist - else KeyAlreadyExists is raised.

	Parameters:

	
	keychain_uid -- unique ID of the keychain

	key_algo -- one of SUPPORTED_ASYMMETRIC_KEY_ALGOS

	public_key (bytes) -- public key in clear PEM format

	Return type:

	None

Keystore pools

These combine local and imported key storages under a single interface.

	
class wacryptolib.keystore.InMemoryKeystorePool

	Bases: KeystorePoolBase

Dummy key storage pool for use in tests, where keys are kepts only process-locally.

NOT MEANT TO BE THREAD-SAFE

	
class wacryptolib.keystore.FilesystemKeystorePool(root_dir)

	Bases: KeystorePoolBase

This class handles a set of locally stored key storages.

The local storage represents the current device/owner, and is expected to be used by read-write trustees,
whereas imported key storages are supposed to be readonly, and only filled with keypairs imported from key-devices.

	
export_foreign_keystore_to_keystore_tree(keystore_uid, include_private_keys=True)

	Exports data tree from the keystore targeted by keystore_uid.

	
get_all_foreign_keystore_metadata(include_keypair_identifiers=False)

	Return a dict mapping key storage UUIDs to the dicts of their metadata.

Raises if any metadata loading fails.

	Return type:

	dict

	
get_foreign_keystore(keystore_uid, writable=False)

	The selected storage MUST exist, else a KeystoreDoesNotExist is raised.

	
get_foreign_keystore_metadata(keystore_uid, include_keypair_identifiers=False)

	Return a metadata dict for the keystore keystore_uid.

	
get_local_keyfactory()

	Storage automatically created if unexisting.

	
import_foreign_keystore_from_keystore_tree(keystore_tree)

	Imports/updates data tree into the keystore targeted by keystore_uid.

	Return type:

	bool

	
list_foreign_keystore_uids()

	Return a sorted list of UUIDs of key storages, corresponding
to the keystore_uid of their origin authentication devices.

	Return type:

	list

Signature

This module allows to sign messages, and then to verify the signature.

	
wacryptolib.signature.SUPPORTED_SIGNATURE_ALGOS = ['DSA_DSS', 'ECC_DSS', 'RSA_PSS']

	These values can be used as 'payload_signature_algo' parameters.

	
wacryptolib.signature.sign_message(message, *, signature_algo, private_key)

	Return a timestamped signature of the chosen type for the given payload,
with the provided key (which must be of a compatible type).

Signature is actually performed on a SHA512 DIGEST of the message.

	Parameters:

	
	message (bytes) -- the bytestring to sign

	signature_algo (str) -- the name of the signing algorithm

	private_key (object) -- the cryptographic key used to create the signature

	Return type:

	dict

	Returns:

	dictionary with signature data

	
wacryptolib.signature.verify_message_signature(*, message, signature_algo, signature, public_key)

	Verify the authenticity of a signature.

Raises if signature is invalid.

	Parameters:

	
	message (bytes) -- the bytestring which was signed

	signature_algo (str) -- the name of the signing algorithm

	signature (dict) -- structure describing the signature

	public_key (object) -- the cryptographic key used to verify the signature

Encryption

This module allows to encrypt bytestring data, then decrypt it.

Public API

	
wacryptolib.cipher.SUPPORTED_CIPHER_ALGOS = ['AES_CBC', 'AES_EAX', 'CHACHA20_POLY1305', 'RSA_OAEP']

	These values can be used as 'cipher_algo'.

	
wacryptolib.cipher.AUTHENTICATED_CIPHER_ALGOS = ['AES_EAX', 'CHACHA20_POLY1305']

	Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.

	
wacryptolib.cipher.STREAMABLE_CIPHER_ALGOS = ['AES_CBC', 'AES_EAX', 'CHACHA20_POLY1305']

	Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.

	
wacryptolib.cipher.encrypt_bytestring(plaintext, *, cipher_algo, key_dict)

	Encrypt a bytestring with the selected algorithm for the given payload,
using the provided key dict (which must contain keys/initializers of proper types and lengths).

	Return type:

	dict

	Returns:

	dictionary with encryption data

	
wacryptolib.cipher.decrypt_bytestring(cipherdict, *, cipher_algo, key_dict, verify_integrity_tags=True)

	Decrypt a bytestring with the selected algorithm for the given encrypted data dict,
using the provided key (which must be of a compatible type and length).

	Parameters:

	
	cipherdict (dict) -- dict with field "ciphertext" as bytestring and (depending
on the cipher_algo) some other fields like "tag" or "nonce"
as bytestrings

	cipher_algo (str) -- one of the supported encryption algorithms

	key_dict (dict) -- dict with secret key fields

	verify_integrity_tags (bool) -- whether to check MAC tags of the ciphertext

	Return type:

	bytes

	Returns:

	dictionary with encryption data.

	
class wacryptolib.cipher.PayloadEncryptionPipeline(output_stream, payload_cipher_layer_extracts)

	Bases: object

PRIVATE API FOR NOW

Pipeline to encrypt data through several encryption nodes, and stream it to an output
binary stream (e.g. file or ByteIO)

Private API

The objects below are only documented for the details they give on specific arguments.

AES with CBC mode

	
class wacryptolib.cipher.AesCbcEncryptionNode(key_dict, payload_digest_algo=())

	Bases: EncryptionNodeBase

Encrypt a bytestring using AES (CBC mode).

	
wacryptolib.cipher._encrypt_via_aes_cbc(plaintext, key_dict)

	Encrypt a bytestring using AES (CBC mode).

	Parameters:

	
	plaintext (bytes) -- the bytes to cipher

	key_dict (dict) -- dict with AES cryptographic main key and iv.
Main key must be 16, 24 or 32 bytes long
(respectively for AES-128, AES-192 or AES-256).

	Return type:

	dict

	Returns:

	dict with field "ciphertext" as bytestring

	
wacryptolib.cipher._decrypt_via_aes_cbc(cipherdict, key_dict, verify_integrity_tags=True)

	Decrypt a bytestring using AES (CBC mode).

	Parameters:

	
	cipherdict (dict) -- dict with field "ciphertext" as bytestring

	key_dict (dict) -- dict with AES cryptographic main key and nonce.

	verify_integrity_tags (bool) -- whether to check MAC tags of the ciphertext
(not applicable for this cipher)

	Return type:

	bytes

	Returns:

	the decrypted bytestring

AES with EAX mode

	
class wacryptolib.cipher.AesEaxEncryptionNode(key_dict, payload_digest_algo=())

	Bases: EncryptionNodeBase

Encrypt a bytestring using AES (EAX mode).

	
wacryptolib.cipher._encrypt_via_aes_eax(plaintext, key_dict)

	Encrypt a bytestring using AES (EAX mode).

	Parameters:

	
	plaintext (bytes) -- the bytes to cipher

	key_dict (dict) -- dict with AES cryptographic main key and nonce.
Main key must be 16, 24 or 32 bytes long
(respectively for AES-128, AES-192 or AES-256).

	Return type:

	dict

	Returns:

	dict with fields "ciphertext" and "tag" as bytestrings

	
wacryptolib.cipher._decrypt_via_aes_eax(cipherdict, key_dict, verify_integrity_tags=True)

	Decrypt a bytestring using AES (EAX mode).

	Parameters:

	
	cipherdict (dict) -- dict with fields "ciphertext", "tag" as bytestrings

	key_dict (dict) -- dict with AES cryptographic main key and nonce.

	verify_integrity_tags (bool) -- whether to check MAC tags of the ciphertext

	Return type:

	bytes

	Returns:

	the decrypted bytestring

ChaCha20_Poly1305

	
class wacryptolib.cipher.Chacha20Poly1305EncryptionNode(key_dict, payload_digest_algo=())

	Bases: EncryptionNodeBase

Encrypt a bytestring using ChaCha20 with Poly1305 authentication.

	
wacryptolib.cipher._encrypt_via_chacha20_poly1305(plaintext, key_dict)

	Encrypt a bytestring with the stream cipher ChaCha20.

Additional cleartext data can be provided so that the
generated mac tag also verifies its integrity.

	Parameters:

	
	plaintext (bytes) -- the bytes to cipher

	key_dict (dict) -- 32 bytes long cryptographic key and nonce

	Return type:

	dict

	Returns:

	dict with fields "ciphertext", "tag", and "header" as bytestrings

	
wacryptolib.cipher._decrypt_via_chacha20_poly1305(cipherdict, key_dict, verify_integrity_tags=True)

	Decrypt a bytestring with the stream cipher ChaCha20.

	Parameters:

	
	cipherdict (dict) -- dict with fields "ciphertext", "tag" and "nonce" as bytestrings

	key_dict (dict) -- 32 bytes long cryptographic key and nonce

	verify_integrity_tags (bool) -- whether to check MAC tags of the ciphertext

	Return type:

	bytes

	Returns:

	the decrypted bytestring

RSA - PKCS#1 OAEP

	
wacryptolib.cipher._encrypt_via_rsa_oaep(plaintext, key_dict)

	Encrypt a bytestring with PKCS#1 RSA OAEP (asymmetric algo).

	Parameters:

	
	plaintext (bytes) -- the bytes to cipher

	key_dict (dict) -- dict with PUBLIC RSA key object (RSA.RsaKey)

	Return type:

	dict

	Returns:

	a dict with field digest_list, containing bytestring chunks of variable width.

	
wacryptolib.cipher._decrypt_via_rsa_oaep(cipherdict, key_dict, verify_integrity_tags=True)

	Decrypt a bytestring with PKCS#1 RSA OAEP (asymmetric algo).

	Parameters:

	
	cipherdict (dict) -- list of ciphertext chunks

	key_dict (dict) -- dict with PRIVATE RSA key object (RSA.RsaKey)

	verify_integrity_tags (bool) -- whether to check MAC tags of the ciphertext
(not applicable for this cipher)

	Return type:

	bytes

	Returns:

	the decrypted bytestring

Shared secret

This module provides utilities to dissociate and recombine Shamir "shared secrets", for which some parts (shards)
can be lost without preventing the reconstruction of the whole secret.

	
wacryptolib.shared_secret.split_secret_into_shards(secret, *, shard_count, threshold_count)

	Generate a Shamir shared secret of shard_count subkeys, with threshold_count
of them required to recompute the initial bytestring.

	Parameters:

	
	secret (bytes) -- bytestring to separate as shards, whatever its length

	shard_count (int) -- the number of shards to be created for the secret

	threshold_count (int) -- the minimal number of shards needed to recombine the key

	Return type:

	list

	Returns:

	list of full bytestring shards

	
wacryptolib.shared_secret.recombine_secret_from_shards(shards)

	Reconstruct a secret from list of Shamir shards

	Parameters:

	shards (Sequence) -- list of k full-length shards (k being exactly the threshold of this shared secret)

	Return type:

	bytes

	Returns:

	the key reconstructed as bytes

Sensor

This module provides base classes to create sensors (gps, gyroscope, audio, video...) and aggregate/push their data towards cryptainers.

Aggregation of records into binary archives

	
class wacryptolib.sensor.TarfileRecordAggregator(cryptainer_storage, max_duration_s)

	Bases: TimeLimitedAggregatorMixin

This class allows sensors to aggregate file-like records of data in memory.

It is in charge of building the filenames of tar records, as well as of completed tarfiles.

Public methods of this class are thread-safe.

	
add_record(sensor_name, from_datetime, to_datetime, extension, payload)

	Add the provided data to the tarfile, using associated metadata.

If, despite included timestamps, several records end up having the exact same name, the last one will have
priority when extracting the tarfile, but all of them will be stored in it anyway.

	Parameters:

	
	sensor_name (str) -- slug label for the sensor

	from_datetime (datetime) -- start time of the recording

	to_datetime (datetime) -- end time of the recording

	extension (str) -- file extension, starting with a dot

	payload (bytes) -- bytestring of audio/video/other data

	
finalize_tarfile()

	Return the content of current tarfile as a bytestring, possibly empty, and reset the current tarfile.

	
static read_tarfile_from_bytestring(payload)

	Create a readonly TarFile instance from the provided bytestring.

Base classes for poller/pusher sensors

	
class wacryptolib.sensor.JsonDataAggregator(tarfile_aggregator, sensor_name, max_duration_s)

	Bases: TimeLimitedAggregatorMixin

This class allows sensors to aggregate dicts of data, which are periodically pushed as a json bytestring
to the underlying TarfileRecordAggregator.

Public methods of this class are thread-safe.

	
add_data(data_dict)

	Flush current data to the tarfile if needed, and append data_dict to the queue.

	
flush_dataset()

	Force the flushing of current data to the tarfile (e.g. when terminating the service).

	
class wacryptolib.sensor.PeriodicValuePoller(json_aggregator, **kwargs)

	Bases: PeriodicValueMixin, PeriodicTaskHandler

This class runs a function at a specified interval, and pushes its result to a json aggregator.

Simultaneous management of multiple sensors

	
class wacryptolib.sensor.SensorManager(sensors)

	Bases: TaskRunnerStateMachineBase

Manage a group of sensors for simultaneous starts/stops.

The underlying aggregators are not supposed to be directly impacted
by these operations - they must be flushed separately.

	
join()

	Wait for the periodic system to really finish running.
Does nothing if periodic system is already stopped.

	
start()

	Start the periodic system which will poll or push the value.

	
stop()

	Request the periodic system to stop as soon as possible.

Json-rpc client

This module provides a client for json-rpc webservices.

	
class wacryptolib.jsonrpc_client.JsonRpcProxy(url, *args, response_error_handler=<function status_slugs_response_error_handler>, **kwargs)

	Bases: Server

A connection to a HTTP JSON-RPC server, backed by the requests library.

Parameters can be passed by position, or as keyword arguments (but not both).

See https://pypi.org/project/jsonrpc-requests/ for usage examples.

The differences between our JsonRpcProxy and upstream's Server class are:

	we dump/load data using Pymongo's Extended Json format, able to transparently deal with bytes, uuids, dates etc.

	we do not auto-unpack single dict arguments on call, e.g proxy.foo({'fizz': 1, 'fuzz': 2}) will be treated as
calling remote foo() with a single dict argument, not as passing it keyword arguments fizz and fuzz.

	a response_error_handler callback can be provided to swallow or convert an error received in an RPC response.

	
wacryptolib.jsonrpc_client.status_slugs_response_error_handler(exc)

	Generic error handler which recognizes status slugs of builtin exceptions in json-rpc error responses,
and reraises them client-side.

Utilities

This module exposes different functions which can be useful when dealing with cryptography and workers.

Task handling

	
wacryptolib.utilities.TaskRunnerStateMachineBase(**kwargs)

	State machine for all sensors/players, checking that the order of start/stop/join
operations is correct.

The two-steps shutdown (stop(), and later join()) allows caller to
efficiently and safely stop numerous runners.

	
wacryptolib.utilities.PeriodicTaskHandler(interval_s, count=-1, runonstart=True, task_func=None, **kwargs)

	This class runs a task at a specified interval, with start/stop/join controls.

If task_func argument is not provided, then _offloaded_run_task() must be overridden by subclass.

Hashing

	
wacryptolib.utilities.SUPPORTED_HASH_ALGOS = ['SHA256', 'SHA512', 'SHA3_256', 'SHA3_512']

	Hash algorithms authorized for use with hash_message()

	
wacryptolib.utilities.hash_message(message, hash_algo)

	Hash a message with the selected hash algorithm, and return the hash as bytes.

Serialization

	
wacryptolib.utilities.dump_to_json_str(data, **extra_options)

	Dump a data tree to a json representation as string.
Supports advanced types like bytes, uuids, dates...

	
wacryptolib.utilities.load_from_json_str(data, **extra_options)

	Load a data tree from a json representation as string.
Supports advanced types like bytes, uuids, dates...

Raises exceptions.ValidationError on loading error.

	
wacryptolib.utilities.dump_to_json_bytes(data, **extra_options)

	Same as dump_to_json_str, but returns UTF8-encoded bytes.

	
wacryptolib.utilities.load_from_json_bytes(data, **extra_options)

	Same as load_from_json_str, but takes UTF8-encoded bytes as input.

	
wacryptolib.utilities.dump_to_json_file(filepath, data, **extra_options)

	Same as dump_to_json_bytes, but writes data to filesystem (and returns bytes too).

	
wacryptolib.utilities.load_from_json_file(filepath, **extra_options)

	Same as load_from_json_bytes, but reads data from filesystem.

Miscellaneous

	
wacryptolib.utilities.generate_uuid0(ts=None)

	Generate a random UUID partly based on Unix timestamp (not part of official "variants").

Uses 6 bytes to encode the time and does not encode any version bits, leaving 10 bytes (80 bits) of random data.

When just transmitting these UUIDs around, the stdlib "uuid" module does the job fine, no need for uuid0 lib.

	Parameters:

	ts (Optional[float]) -- optional timestamp to use instead of current time (if not falsey)

	Returns:

	uuid0 object (subclass of UUID)

	
wacryptolib.utilities.split_as_chunks(bytestring, *, chunk_size, must_pad, accept_incomplete_chunk=False)

	Split a bytestring into chunks (or blocks)

	Parameters:

	
	bytestring (bytes) -- element to be split into chunks

	chunk_size (int) -- size of a chunk in bytes

	must_pad (bool) -- whether the bytestring must be padded first or not

	accept_incomplete_chunk (bool) -- do not raise error if a chunk with a length != chunk_size is obtained

	Return type:

	List[bytes]

	Returns:

	list of bytes chunks

	
wacryptolib.utilities.recombine_chunks(chunks, *, chunk_size, must_unpad)

	Recombine chunks which were previously separated.

	Parameters:

	
	chunks (Sequence[bytes]) -- sequence of bytestring parts

	chunk_size (int) -- size of a chunk in bytes (only used for error checking, when unpadding occurs)

	must_unpad (bool) -- whether the bytestring must be unpadded after recombining, or not

	Return type:

	bytes

	Returns:

	initial bytestring

Exceptions

These wacryptolib-specific exception classes should be used everywhere for functional errors, instead of standard Python exceptions (ValueError etc.)

	
exception wacryptolib.exceptions.FunctionalError

	Bases: Exception

Base class for all 'normal' errors of the API

	
exception wacryptolib.exceptions.ExistenceError

	Bases: FunctionalError

	
exception wacryptolib.exceptions.KeyDoesNotExist

	Bases: ExistenceError

	
exception wacryptolib.exceptions.KeyAlreadyExists

	Bases: ExistenceError

	
exception wacryptolib.exceptions.KeystoreDoesNotExist

	Bases: ExistenceError

	
exception wacryptolib.exceptions.KeystoreAlreadyExists

	Bases: ExistenceError

	
exception wacryptolib.exceptions.KeystoreMetadataDoesNotExist

	Bases: KeystoreDoesNotExist

	
exception wacryptolib.exceptions.AuthenticationError

	Bases: FunctionalError

	
exception wacryptolib.exceptions.AuthorizationError

	Bases: FunctionalError

	
exception wacryptolib.exceptions.OperationNotSupported

	Bases: FunctionalError

	
exception wacryptolib.exceptions.CryptographyError

	Bases: FunctionalError

	
exception wacryptolib.exceptions.EncryptionError

	Bases: CryptographyError

	
exception wacryptolib.exceptions.DecryptionError

	Bases: CryptographyError

	
exception wacryptolib.exceptions.DecryptionIntegrityError

	Bases: DecryptionError

	
exception wacryptolib.exceptions.SignatureCreationError

	Bases: CryptographyError

	
exception wacryptolib.exceptions.SignatureVerificationError

	Bases: CryptographyError

	
exception wacryptolib.exceptions.KeyLoadingError

	Bases: CryptographyError

	
exception wacryptolib.exceptions.ValidationError

	Bases: FunctionalError

	
exception wacryptolib.exceptions.SchemaValidationError

	Bases: ValidationError

Error handling

This module provides utilities to convert python exceptions from/to a generic serialized format, so that webservice
client can handle them in a hierarchical and forward-compatible manner.

	
class wacryptolib.error_handling.StatusSlugMapper(exception_classes, fallback_exception_class, exception_slugifier=<function slugify_exception_class>)

	Bases: object

High-level wrapper for converting exceptions from/to status slugs.

	
static gather_exception_subclasses(parent_classes)

	Browse the module's variables, and return all found exception classes
which are subclasses of parent_classes (including these, if found in module).

	Parameters:

	
	module -- python module object

	parent_classes (Sequence) -- list of exception classes (or single exception class)

	Returns:

	list of exception subclasses

	
get_closest_exception_class_for_status_slugs(slugs)

	Return the closest exception class targeted by the provided status slugs,
with a fallback class if no matching ancestor is found at all.

	
slugify_exception_class(exception_class, *args, **kwargs)

	Use the exception slugifier provided in __init__() to turn an exception class into a qualified name.

	
wacryptolib.error_handling.gather_exception_subclasses(module, parent_classes)

	Browse the module's variables, and return all found exception classes
which are subclasses of parent_classes (including these, if found in module).

	Parameters:

	
	module -- python module object

	parent_classes (Sequence) -- list of exception classes (or single exception class)

	Returns:

	list of exception subclasses

	
wacryptolib.error_handling.slugify_exception_class(exception_class, excluded_classes=(<class 'object'>, <class 'BaseException'>, <class 'Exception'>), qualified_name_extractor=<function _fully_qualified_name>)

	Turn an exception class into a list of slugs which identifies it uniquely,
from ancestor to descendant.

	Parameters:

	
	exception_class -- exception class to slugify

	excluded_classes -- list of parents classes so generic that they needn't be included in slugs

	qualified_name_extractor -- callable which turns an exception class into its qualified name

	Returns:

	list of strings

	
wacryptolib.error_handling.construct_status_slug_mapper(exception_classes, fallback_exception_class, exception_slugifier=<function slugify_exception_class>)

	Construct and return a tree where branches are qualified slugs, and each leaf is an exception
class corresponding to the path leading to it.

Intermediate branches can carry an (ancestor) exception class too, but only if this one is explicitely
included in exception_classes.

The fallback exception class is stored at the root of the tree under the "" key.

	
wacryptolib.error_handling.get_closest_exception_class_for_status_slugs(slugs, mapper_tree)

	Return the exception class targeted by the provided status slugs,
or the closest ancestor class if the exact exception class is not in the mapper.

If slugs is empty, or if no ancestor is found, the fallback exception of the mapper is returned instead.

	Parameters:

	
	slugs -- qualified status slugs

	mapper_tree -- mapper tree constructed from selected exceptions

	Returns:

	exception class object

Scaffolding for tests

This module provides utilities so that other projects can easily test their own implementations of
cryptolib-related classes.

This is a provisional API, which may change without deprecation period, and which requires dependencies
like pytest.

	
wacryptolib.scaffolding.check_keystore_basic_get_set_api(keystore, readonly_keystore=None)

	Test the workflow of getters/setters of the storage API, for uid-attached keys.

	
wacryptolib.scaffolding.check_keystore_free_keys_api(keystore)

	Test the storage regarding the precreation of "free keys", and their subsequent attachment to uids.

	
wacryptolib.scaffolding.check_keystore_free_keys_concurrency(keystore)

	Parallel tests to check the thread-safety of the storage regarding "free keys" booking.

	
wacryptolib.scaffolding.check_sensor_state_machine(sensor, run_duration=0)

	Check the proper start/stop/join behaviour of a sensor instance.

Development instructions

Getting started

To develop on the WACryptolib, the interpreter for python3.7 or later must be installed (see pyproject.toml for version details).

Instead of pip, we use poetry [https://github.com/sdispater/poetry] to manage dependencies.

Automatic setup

Launch python wacryptolib_installer.py in repository root, from inside a python virtual environment.

This will update pip, install a local version of poetry, install the python modules required by wacryptolib, and then launch unit-tests.

On Windows, poetry might try to move some DLLs it is currently using, so install might crash with file permission errors, but relaunching the installer should eventually succeed...

Manual setup

Use pip install poetry to install poetry (or better, follow its official docs to install it system-wide and avoid the permission errors mentioned just above).

Use poetry install from repository root, to install python dependencies (poetry will create its own virtualenv if you don't have one activated).

As an alternative, you can launch pip install -r pip_requirements_export.txt, but this requirements file might be a bit outdated for latest Python versions.

Launching the CLI

To try the command line interface, the easiest is to launch the main.py script.

If you added "src/" to your pythonpath, e.g. with pip install -e <repo-root> (requires pip>=21.3), you can instead use:

$ python -m wacryptolib

When wacryptolib has been installed with pip, it exposes a "flightbox" executable which does the same as the main.py script.

Handy dev commands

Use pytest to launch unit-tests (default pytest arguments are in setup.cfg).
Use poetry run pytest instead, if poetry manages its own virtualenv.

Add --cov=wacryptolib argument to the pytest command to generate coverage reports.

Use bash ci.sh to do a full checkup before committing or pushing your changes (under Windows, launch CI commands one by one).

Use the Black [https://black.readthedocs.io/en/stable/] formatter to format the python code like so:

$ black -l 120 src/ tests/

To generate documentation, launch Sphinx commands ("make html"...) from the doc/subfolder. The "flightbox" entrypoint mentioned above should have been installed into your virtualenv first, else, some documentation generation will fail.

Release process

To release a new version of the WACryptolib, we don't need Twine, since Poetry already has publishing commands.

Initial setup

You must first register testpypi as a valid package store in Poetry:

$ poetry config repositories.testpypi https://test.pypi.org/legacy/

Check it then with:

$ poetry config --list

Publish a new version

Issue:

$ poetry build
$ poetry publish -r testpypi

Then test this preview package in some project using the wacryptolib:

$ python -m pip install -U --index-url https://test.pypi.org/simple/ --extra-index-url https://pypi.org/simple/ wacryptolib

When all is verified on testpypi (Readme, files uploaded, etc.), release the package to the real pypi:

$ poetry publish

If authentication troubles, try setting credentials with something like this:

$ poetry config http-basic.<testpypi/pypi> <username> <password>

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 wacryptolib	

 	
 	
 wacryptolib.exceptions	

Index

 Symbols
 | _
 | A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | V
 | W

Symbols

 	
 	
 --asym-cipher-algo

 	flightbox-cryptoconf-generate-simple-add-key-cipher-layer command line option

 	flightbox-cryptoconf-generate-simple-add-key-shard command line option

 	
 --bundle

 	flightbox-encrypt command line option

 	
 --cryptainer-storage

 	flightbox command line option

 	
 --cryptoconf

 	flightbox-encrypt command line option

 	
 --format

 	flightbox-authenticator-view command line option

 	flightbox-cryptainer-list command line option

 	flightbox-foreign-keystore-list command line option

 	flightbox-foreign-keystore-view command line option

 	
 --from-gateway

 	flightbox-foreign-keystore-import command line option

 	
 --from-path

 	flightbox-foreign-keystore-import command line option

 	
 --from-usb

 	flightbox-foreign-keystore-import command line option

 	
 --gateway-url

 	flightbox command line option

 	
 --include-private-keys

 	flightbox-foreign-keystore-import command line option

 	
 --keychain-uid

 	flightbox-cryptoconf-generate-simple command line option

 	flightbox-cryptoconf-generate-simple-add-key-cipher-layer command line option

 	flightbox-cryptoconf-generate-simple-add-key-shard command line option

 	
 --keypair-count

 	flightbox-authenticator-create command line option

 	
 --keystore-pool

 	flightbox command line option

 	
 --keystore-uid

 	flightbox-cryptoconf-generate-simple-add-key-cipher-layer command line option

 	flightbox-cryptoconf-generate-simple-add-key-shard command line option

 	
 --max-age

 	flightbox-cryptainer-purge command line option

 	
 --max-count

 	flightbox-cryptainer-purge command line option

 	
 	
 --max-quota

 	flightbox-cryptainer-purge command line option

 	
 --output-basename

 	flightbox-encrypt command line option

 	
 --output-file

 	flightbox-cryptainer-decrypt command line option

 	
 --owner

 	flightbox-authenticator-create command line option

 	
 --passphrase-hint

 	flightbox-authenticator-create command line option

 	
 --sym-cipher-algo

 	flightbox-cryptoconf-generate-simple-add-key-cipher-layer command line option

 	flightbox-cryptoconf-generate-simple-add-key-shard command line option

 	flightbox-cryptoconf-generate-simple-add-payload-cipher-layer command line option

 	
 --threshold

 	flightbox-cryptoconf-generate-simple-add-key-shared-secret command line option

 	
 --trustee-type

 	flightbox-cryptoconf-generate-simple-add-key-cipher-layer command line option

 	flightbox-cryptoconf-generate-simple-add-key-shard command line option

 	
 --verbosity

 	flightbox command line option

 	
 -c

 	flightbox command line option

 	flightbox-encrypt command line option

 	
 -f

 	flightbox-authenticator-view command line option

 	flightbox-cryptainer-list command line option

 	flightbox-foreign-keystore-list command line option

 	flightbox-foreign-keystore-view command line option

 	
 -g

 	flightbox command line option

 	
 -k

 	flightbox command line option

 	
 -o

 	flightbox-cryptainer-decrypt command line option

 	flightbox-encrypt command line option

 	
 -v

 	flightbox command line option

_

 	
 	_decrypt_via_aes_cbc() (in module wacryptolib.cipher)

 	_decrypt_via_aes_eax() (in module wacryptolib.cipher)

 	_decrypt_via_chacha20_poly1305() (in module wacryptolib.cipher)

 	_decrypt_via_rsa_oaep() (in module wacryptolib.cipher)

 	_encrypt_via_aes_cbc() (in module wacryptolib.cipher)

 	
 	_encrypt_via_aes_eax() (in module wacryptolib.cipher)

 	_encrypt_via_chacha20_poly1305() (in module wacryptolib.cipher)

 	_encrypt_via_rsa_oaep() (in module wacryptolib.cipher)

 	_generate_dsa_keypair_as_objects() (in module wacryptolib.keygen)

 	_generate_ecc_keypair_as_objects() (in module wacryptolib.keygen)

 	_generate_rsa_keypair_as_objects() (in module wacryptolib.keygen)

A

 	
 	add_data() (wacryptolib.sensor.JsonDataAggregator method)

 	add_free_keypair() (wacryptolib.keystore.FilesystemKeystore method)

 	(wacryptolib.keystore.InMemoryKeystore method)

 	add_record() (wacryptolib.sensor.TarfileRecordAggregator method)

 	AesCbcEncryptionNode (class in wacryptolib.cipher)

 	AesEaxEncryptionNode (class in wacryptolib.cipher)

 	attach_free_keypair_to_uuid() (wacryptolib.keystore.FilesystemKeystore method)

 	(wacryptolib.keystore.InMemoryKeystore method)

 	
 	AUTHENTICATED_CIPHER_ALGOS (in module wacryptolib.cipher)

 	AuthenticationError

 	
 AUTHENTICATOR_DIR

 	flightbox-authenticator-create command line option

 	flightbox-authenticator-delete command line option

 	flightbox-authenticator-validate command line option

 	flightbox-authenticator-view command line option

 	AuthorizationError

C

 	
 	Chacha20Poly1305EncryptionNode (class in wacryptolib.cipher)

 	check_cryptainer_sanity() (in module wacryptolib.cryptainer)

 	(wacryptolib.cryptainer.ReadonlyCryptainerStorage method)

 	check_cryptoconf_sanity() (in module wacryptolib.cryptainer)

 	check_keystore_basic_get_set_api() (in module wacryptolib.scaffolding)

 	check_keystore_free_keys_api() (in module wacryptolib.scaffolding)

 	check_keystore_free_keys_concurrency() (in module wacryptolib.scaffolding)

 	check_sensor_state_machine() (in module wacryptolib.scaffolding)

 	construct_status_slug_mapper() (in module wacryptolib.error_handling)

 	create_cryptainer_encryption_stream() (wacryptolib.cryptainer.CryptainerStorage method)

 	
 	
 CRYPTAINER_NAME

 	flightbox-cryptainer-decrypt command line option

 	flightbox-cryptainer-delete command line option

 	flightbox-cryptainer-summarize command line option

 	flightbox-cryptainer-validate command line option

 	CryptainerEncryptionPipeline (class in wacryptolib.cryptainer)

 	CryptainerStorage (class in wacryptolib.cryptainer)

 	
 CRYPTOCONF_FILE

 	flightbox-cryptoconf-summarize command line option

 	flightbox-cryptoconf-validate command line option

 	CryptographyError

D

 	
 	decrypt_bytestring() (in module wacryptolib.cipher)

 	decrypt_cryptainer_from_storage() (wacryptolib.cryptainer.ReadonlyCryptainerStorage method)

 	decrypt_payload_from_cryptainer() (in module wacryptolib.cryptainer)

 	decrypt_with_private_key() (wacryptolib.trustee.TrusteeApi method)

 	DecryptionError

 	
 	DecryptionIntegrityError

 	delete_cryptainer_from_filesystem() (in module wacryptolib.cryptainer)

 	dump_cryptainer_to_filesystem() (in module wacryptolib.cryptainer)

 	dump_to_json_bytes() (in module wacryptolib.utilities)

 	dump_to_json_file() (in module wacryptolib.utilities)

 	dump_to_json_str() (in module wacryptolib.utilities)

E

 	
 	encrypt_bytestring() (in module wacryptolib.cipher)

 	encrypt_file() (wacryptolib.cryptainer.CryptainerStorage method)

 	encrypt_payload_and_stream_cryptainer_to_filesystem() (in module wacryptolib.cryptainer)

 	encrypt_payload_into_cryptainer() (in module wacryptolib.cryptainer)

 	EncryptionError

 	
 	enqueue_file_for_encryption() (wacryptolib.cryptainer.CryptainerStorage method)

 	ExistenceError

 	export_foreign_keystore_to_keystore_tree() (wacryptolib.keystore.FilesystemKeystorePool method)

 	export_to_keystore_tree() (wacryptolib.keystore.FilesystemKeystore method)

 	extract_metadata_from_cryptainer() (in module wacryptolib.cryptainer)

F

 	
 	fetch_public_key() (wacryptolib.trustee.TrusteeApi method)

 	FilesystemKeystore (class in wacryptolib.keystore)

 	FilesystemKeystorePool (class in wacryptolib.keystore)

 	finalize_tarfile() (wacryptolib.sensor.TarfileRecordAggregator method)

 	
 flightbox command line option

 	--cryptainer-storage

 	--gateway-url

 	--keystore-pool

 	--verbosity

 	-c

 	-g

 	-k

 	-v

 	
 flightbox-authenticator-create command line option

 	--keypair-count

 	--owner

 	--passphrase-hint

 	AUTHENTICATOR_DIR

 	
 flightbox-authenticator-delete command line option

 	AUTHENTICATOR_DIR

 	
 flightbox-authenticator-validate command line option

 	AUTHENTICATOR_DIR

 	
 flightbox-authenticator-view command line option

 	--format

 	-f

 	AUTHENTICATOR_DIR

 	
 flightbox-cryptainer-decrypt command line option

 	--output-file

 	-o

 	CRYPTAINER_NAME

 	
 flightbox-cryptainer-delete command line option

 	CRYPTAINER_NAME

 	
 flightbox-cryptainer-list command line option

 	--format

 	-f

 	
 flightbox-cryptainer-purge command line option

 	--max-age

 	--max-count

 	--max-quota

 	
 flightbox-cryptainer-summarize command line option

 	CRYPTAINER_NAME

 	
 flightbox-cryptainer-validate command line option

 	CRYPTAINER_NAME

 	
 flightbox-cryptoconf-generate-simple command line option

 	--keychain-uid

 	
 	
 flightbox-cryptoconf-generate-simple-add-key-cipher-layer command line option

 	--asym-cipher-algo

 	--keychain-uid

 	--keystore-uid

 	--sym-cipher-algo

 	--trustee-type

 	
 flightbox-cryptoconf-generate-simple-add-key-shard command line option

 	--asym-cipher-algo

 	--keychain-uid

 	--keystore-uid

 	--sym-cipher-algo

 	--trustee-type

 	
 flightbox-cryptoconf-generate-simple-add-key-shared-secret command line option

 	--threshold

 	
 flightbox-cryptoconf-generate-simple-add-payload-cipher-layer command line option

 	--sym-cipher-algo

 	
 flightbox-cryptoconf-summarize command line option

 	CRYPTOCONF_FILE

 	
 flightbox-cryptoconf-validate command line option

 	CRYPTOCONF_FILE

 	
 flightbox-encrypt command line option

 	--bundle

 	--cryptoconf

 	--output-basename

 	-c

 	-o

 	INPUT_FILE

 	
 flightbox-foreign-keystore-delete command line option

 	KEYSTORE_UID

 	
 flightbox-foreign-keystore-import command line option

 	--from-gateway

 	--from-path

 	--from-usb

 	--include-private-keys

 	
 flightbox-foreign-keystore-list command line option

 	--format

 	-f

 	
 flightbox-foreign-keystore-view command line option

 	--format

 	-f

 	KEYSTORE_UID

 	flush_dataset() (wacryptolib.sensor.JsonDataAggregator method)

 	FunctionalError

G

 	
 	gather_exception_subclasses() (in module wacryptolib.error_handling)

 	(wacryptolib.error_handling.StatusSlugMapper static method)

 	gather_trustee_dependencies() (in module wacryptolib.cryptainer)

 	generate_keypair() (in module wacryptolib.keygen)

 	generate_symkey() (in module wacryptolib.keygen)

 	generate_uuid0() (in module wacryptolib.utilities)

 	get_all_foreign_keystore_metadata() (wacryptolib.keystore.FilesystemKeystorePool method)

 	get_closest_exception_class_for_status_slugs() (in module wacryptolib.error_handling)

 	(wacryptolib.error_handling.StatusSlugMapper method)

 	get_cryptainer_size_on_filesystem() (in module wacryptolib.cryptainer)

 	get_cryptoconf_summary() (in module wacryptolib.cryptainer)

 	
 	get_foreign_keystore() (wacryptolib.keystore.FilesystemKeystorePool method)

 	get_foreign_keystore_metadata() (wacryptolib.keystore.FilesystemKeystorePool method)

 	get_free_keypairs_count() (wacryptolib.keystore.FilesystemKeystore method)

 	(wacryptolib.keystore.InMemoryKeystore method)

 	get_keystore_metadata() (wacryptolib.keystore.FilesystemKeystore method)

 	get_local_keyfactory() (wacryptolib.keystore.FilesystemKeystorePool method)

 	get_message_signature() (wacryptolib.trustee.TrusteeApi method)

 	get_private_key() (wacryptolib.keystore.FilesystemKeystore method)

 	(wacryptolib.keystore.InMemoryKeystore method)

 	get_public_key() (wacryptolib.keystore.FilesystemKeystore method)

 	(wacryptolib.keystore.InMemoryKeystore method)

 	get_trustee_proxy() (in module wacryptolib.cryptainer)

H

 	
 	hash_message() (in module wacryptolib.utilities)

I

 	
 	import_foreign_keystore_from_keystore_tree() (wacryptolib.keystore.FilesystemKeystorePool method)

 	import_from_keystore_tree() (wacryptolib.keystore.FilesystemKeystore method)

 	initialize_authenticator() (in module wacryptolib.authenticator)

 	InMemoryKeystore (class in wacryptolib.keystore)

 	
 	InMemoryKeystorePool (class in wacryptolib.keystore)

 	
 INPUT_FILE

 	flightbox-encrypt command line option

 	is_authenticator_initialized() (in module wacryptolib.authenticator)

J

 	
 	join() (wacryptolib.sensor.SensorManager method)

 	
 	JsonDataAggregator (class in wacryptolib.sensor)

 	JsonRpcProxy (class in wacryptolib.jsonrpc_client)

K

 	
 	KeyAlreadyExists

 	KeyDoesNotExist

 	KeyLoadingError

 	
 KEYSTORE_UID

 	flightbox-foreign-keystore-delete command line option

 	flightbox-foreign-keystore-view command line option

 	
 	KeystoreAlreadyExists

 	KeystoreDoesNotExist

 	KeystoreMetadataDoesNotExist

L

 	
 	list_available_authdevices() (in module wacryptolib.authdevice)

 	list_cryptainer_names() (wacryptolib.cryptainer.ReadonlyCryptainerStorage method)

 	list_cryptainer_properties() (wacryptolib.cryptainer.ReadonlyCryptainerStorage method)

 	list_foreign_keystore_uids() (wacryptolib.keystore.FilesystemKeystorePool method)

 	list_keypair_identifiers() (wacryptolib.keystore.FilesystemKeystore method)

 	(wacryptolib.keystore.InMemoryKeystore method)

 	
 	load_asymmetric_key_from_pem_bytestring() (in module wacryptolib.keygen)

 	load_cryptainer_from_filesystem() (in module wacryptolib.cryptainer)

 	load_cryptainer_from_storage() (wacryptolib.cryptainer.ReadonlyCryptainerStorage method)

 	load_from_json_bytes() (in module wacryptolib.utilities)

 	load_from_json_file() (in module wacryptolib.utilities)

 	load_from_json_str() (in module wacryptolib.utilities)

 	load_keystore_metadata() (in module wacryptolib.keystore)

M

 	
 	
 module

 	wacryptolib.exceptions

O

 	
 	OperationNotSupported

P

 	
 	PayloadEncryptionPipeline (class in wacryptolib.cipher)

 	
 	PeriodicTaskHandler() (in module wacryptolib.utilities)

 	PeriodicValuePoller (class in wacryptolib.sensor)

R

 	
 	read_tarfile_from_bytestring() (wacryptolib.sensor.TarfileRecordAggregator static method)

 	ReadonlyCryptainerStorage (class in wacryptolib.cryptainer)

 	ReadonlyTrusteeApi (class in wacryptolib.trustee)

 	
 	recombine_chunks() (in module wacryptolib.utilities)

 	recombine_secret_from_shards() (in module wacryptolib.shared_secret)

 	request_decryption_authorization() (wacryptolib.trustee.TrusteeApi method)

 	request_decryption_authorizations() (in module wacryptolib.cryptainer)

S

 	
 	SchemaValidationError

 	SensorManager (class in wacryptolib.sensor)

 	set_keypair() (wacryptolib.keystore.FilesystemKeystore method)

 	(wacryptolib.keystore.InMemoryKeystore method)

 	set_private_key() (wacryptolib.keystore.FilesystemKeystore method)

 	(wacryptolib.keystore.InMemoryKeystore method)

 	set_public_key() (wacryptolib.keystore.FilesystemKeystore method)

 	(wacryptolib.keystore.InMemoryKeystore method)

 	sign_message() (in module wacryptolib.signature)

 	SignatureCreationError

 	SignatureVerificationError

 	slugify_exception_class() (in module wacryptolib.error_handling)

 	(wacryptolib.error_handling.StatusSlugMapper method)

 	
 	split_as_chunks() (in module wacryptolib.utilities)

 	split_secret_into_shards() (in module wacryptolib.shared_secret)

 	start() (wacryptolib.sensor.SensorManager method)

 	status_slugs_response_error_handler() (in module wacryptolib.jsonrpc_client)

 	StatusSlugMapper (class in wacryptolib.error_handling)

 	stop() (wacryptolib.sensor.SensorManager method)

 	STREAMABLE_CIPHER_ALGOS (in module wacryptolib.cipher)

 	SUPPORTED_ASYMMETRIC_KEY_ALGOS (in module wacryptolib.keygen)

 	SUPPORTED_CIPHER_ALGOS (in module wacryptolib.cipher)

 	SUPPORTED_HASH_ALGOS (in module wacryptolib.utilities)

 	SUPPORTED_SIGNATURE_ALGOS (in module wacryptolib.signature)

 	SUPPORTED_SYMMETRIC_KEY_ALGOS (in module wacryptolib.keygen)

T

 	
 	TarfileRecordAggregator (class in wacryptolib.sensor)

 	
 	TaskRunnerStateMachineBase() (in module wacryptolib.utilities)

 	TrusteeApi (class in wacryptolib.trustee)

V

 	
 	ValidationError

 	
 	verify_message_signature() (in module wacryptolib.signature)

W

 	
 	
 wacryptolib.exceptions

 	module

 	
 	wait_for_idle_state() (wacryptolib.cryptainer.CryptainerStorage method)

 _static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to the WACryptolib documentation!

 		
 Presentation

 		
 Overview

 		
 Installing the lib

 		
 CLI interface

 		
 Cryptolib concepts

 		
 Different digital keys

 		
 Data naming and integrity

 		
 Keypair repositories

 		
 Trusted parties

 		
 Cryptainers and cryptoconfs

 		
 Discover cryptainers

 		
 Overview

 		
 Encrypting data into a cryptainer

 		
 Encryption/signature of the payload

 		
 Encryption of the keys

 		
 Different modes of encryption processing

 		
 Decrypting data from a cryptainer

 		
 Noteworthy fields of a cryptainer

 		
 Cryptoconf examples

 		
 Simple cryptoconf

 		
 Complex cryptoconf

 		
 Flightbox CLI Tutorial

 		
 CLI overview

 		
 Playing with default encryption

 		
 Creating an authenticator trustee

 		
 Importing foreign keystores

 		
 Generating simple cryptoconfs

 		
 Securely encrypting data

 		
 Managing cryptainers

 		
 Flightbox CLI Reference

 		
 flightbox

 		
 authenticator

 		
 cryptainer

 		
 cryptoconf

 		
 encrypt

 		
 foreign-keystore

 		
 Selected algorithms and formats

 		
 Symmetric ciphers

 		
 Asymmetric ciphers

 		
 Signature algorithms

 		
 Hashing functions

 		
 Storage formats

 		
 Communication protocols

 		
 Notes on safety and performance

 		
 API Documentation

 		
 Cryptainer

 		
 Cryptainer object processing

 		
 Validation utilities

 		
 Filesystem operations

 		
 Cryptainer storage system

 		
 Trustee operations

 		
 Trustee

 		
 API for trustee services

 		
 Authenticator

 		
 initialize_authenticator()

 		
 is_authenticator_initialized()

 		
 Authentication device

 		
 list_available_authdevices()

 		
 Key generation

 		
 Public API

 		
 Private API

 		
 Key storage

 		
 Keystore

 		
 Keystore pools

 		
 Signature

 		
 SUPPORTED_SIGNATURE_ALGOS

 		
 sign_message()

 		
 verify_message_signature()

 		
 Encryption

 		
 Public API

 		
 Private API

 		
 Shared secret

 		
 split_secret_into_shards()

 		
 recombine_secret_from_shards()

 		
 Sensor

 		
 Aggregation of records into binary archives

 		
 Base classes for poller/pusher sensors

 		
 Simultaneous management of multiple sensors

 		
 Json-rpc client

 		
 JsonRpcProxy

 		
 status_slugs_response_error_handler()

 		
 Utilities

 		
 Task handling

 		
 Hashing

 		
 Serialization

 		
 Miscellaneous

 		
 Exceptions

 		
 FunctionalError

 		
 ExistenceError

 		
 KeyDoesNotExist

 		
 KeyAlreadyExists

 		
 KeystoreDoesNotExist

 		
 KeystoreAlreadyExists

 		
 KeystoreMetadataDoesNotExist

 		
 AuthenticationError

 		
 AuthorizationError

 		
 OperationNotSupported

 		
 CryptographyError

 		
 EncryptionError

 		
 DecryptionError

 		
 DecryptionIntegrityError

 		
 SignatureCreationError

 		
 SignatureVerificationError

 		
 KeyLoadingError

 		
 ValidationError

 		
 SchemaValidationError

 		
 Error handling

 		
 StatusSlugMapper

 		
 gather_exception_subclasses()

 		
 slugify_exception_class()

 		
 construct_status_slug_mapper()

 		
 get_closest_exception_class_for_status_slugs()

 		
 Scaffolding for tests

 		
 check_keystore_basic_get_set_api()

 		
 check_keystore_free_keys_api()

 		
 check_keystore_free_keys_concurrency()

 		
 check_sensor_state_machine()

 		
 Development instructions

 		
 Getting started

 		
 Automatic setup

 		
 Manual setup

 		
 Launching the CLI

 		
 Handy dev commands

 		
 Release process

 		
 Initial setup

 		
 Publish a new version

